Social planner wants to assign goods to its members.
- Student placement mechanisms (NYC, Boston).
- House allocation in colleges.

Constraints:
- No monetary transfer, random assignments.
- Only ordinal preferences (ranking over goods) can be used.

There are two competing mechanisms: random priority (RP) and probabilistic serial (PS). We’ll study what the issues are and how to evaluate the tradeoffs between them.
- There is a fixed set of **types of goods** O, plus the null good (receiving no good) \emptyset.
- Each agent i has strict preferences over $O \cup \{\emptyset\}$.
- A **random assignment** is a matrix $P = [P_{ia}]_{i,a}$ where P_{ia} is the probability that agent i obtains good a.
Random Priority Mechanism

Random Priority (RP):

1. Draw each ordering of the agents with equal probability, and
2. The first agent receives her most preferred good, the next agent his most preferred good among the remaining ones, and so on.

RP is

- Easy to implement.
- Strategy-proof.
- Fair (equal treatment of equals).
- Ex post efficient.
- Widely used in practice.
Real goods $O = \{a, b\}$ with one copy each and agents $N = \{1, 2, 3, 4\}$,
1 and 2 like a, b, \emptyset (in this order),
3 and 4 like b, a, \emptyset.

The random assignments under RP

<table>
<thead>
<tr>
<th></th>
<th>Good a</th>
<th>Good b</th>
<th>Good \emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents 1 and 2</td>
<td>5/12</td>
<td>1/12</td>
<td>1/2</td>
</tr>
<tr>
<td>Agents 3 and 4</td>
<td>1/12</td>
<td>5/12</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Everyone prefers

<table>
<thead>
<tr>
<th></th>
<th>Good a</th>
<th>Good b</th>
<th>Good \emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents 1 and 2</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>Agents 3 and 4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>
A random assignment P (first-order) stochastically dominates another random assignment P' if, for every agent,

$$\Pr[i \text{ gets } a \text{ or more preferred under } P] \geq \Pr[i \text{ gets } a \text{ or more preferred under } P'], \quad \text{for all } i, a,$$

with strict inequality for at least one pair i, a.

A random assignment is **ordinally efficient** (sd-efficient) if it is not stochastically dominated by any other random assignment.

In environments where only ordinal preferences can be used, ordinal efficiency is a natural efficiency concept.

RP may result in ordinally inefficient random assignments (last example).
Bogomolnaia and Moulin (2001) define PS based on an “eating algorithm”:

1. Imagine each good is a divisible good of “probability shares.”
2. Imagine there is a time interval [0, 1].
3. Each agent “eats” the best good with speed one at every time (among goods that have not been completely eaten away).
4. At time $t = 1$, each agent is endowed with probability shares.
5. PS assignment is the resulting profile of shares.
The same example as before: \(O = \{a, b\} \), with one copy each, \(N = \{1, 2, 3, 4\} \),
1 and 2 like \(a, b, \emptyset \) (in this order),
3 and 4 like \(b, a, \emptyset \).

Compute the PS assignment:

1. \(t = 0 \): Agents 1 and 2 start eating \(a \), and agents 3 and 4 start eating \(b \).
2. \(t = 1/2 \): goods \(a \) and \(b \) are eaten away. No (real) goods remain.

The resulting assignment

<table>
<thead>
<tr>
<th></th>
<th>Good a</th>
<th>Good b</th>
<th>Good (\emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents 1 and 2</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>Agents 3 and 4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

is ordinally efficient.
More generally,

Theorem

For any reported preferences, the PS mechanism produces an ordinally efficient assignment with respect to the reported preferences.

So PS eliminates (ordinal) inefficiency, unlike RP.
An intuitive reason that PS is ordinally efficient comes from the nature of “eating.”

At each moment of time in the time interval, everyone is eating (infinitesimal share of) his or her favorite available good.

Suppose that agent i likes a better than b but eats b. Then a was already eaten away, and so on.
We can think of an appropriate fairness criterion for random assignments.

We say that a random assignment is **envy-free** if everyone likes his or her assignment better than assignment of anyone else (in the sense that her assignment stochastically dominates others’).

Theorem

For any reported preferences, the PS mechanism produces an envy-free assignment with respect to the reported preferences.
An intuitive reason that PS is envy-free is, again, from the nature of “eating.”

At each moment of time in the time interval, everyone is eating (infinitesimal share of) his or her favorite available good.

So, everyone has chance to eat a better (from his/her viewpoint) good than anyone else, so at the end, no one envies assignments of someone else.
goods \{a, b, \emptyset\} with one unit each, \(N = \{1, 2, 3, 4\}\),
1 likes \(a, b, \emptyset\) (in this order),
2 likes \(a, \emptyset\),
3,4 like \(b, \emptyset\).

If 1 reports true preferences,

\begin{table}[h]
\begin{tabular}{l|ccc}
 & Good \(a\) & Good \(b\) & Good \(\emptyset\) \\
\hline
Agents 1 and 2 & 1/2 & 0 & 1/2 \\
Agents 3 and 4 & 0 & 1/2 & 1/2 \\
\end{tabular}
\end{table}

If 1 reports a lie: \(b, a, \emptyset\),

\begin{table}[h]
\begin{tabular}{l|ccc}
 & Good \(a\) & Good \(b\) & Good \(\emptyset\) \\
\hline
Agent 1 & 1/3 & 1/3 & 1/3 \\
Agent 2 & 2/3 & 0 & 1/3 \\
Agents 3 and 4 & 0 & 1/3 & 2/3 \\
\end{tabular}
\end{table}

1 may be made better off.
So, PS is better in efficiency (ordinal efficiency), but RP is better in incentives (strategy-proofness).

Is there any other mechanism that can dominate both RP and PS?

Theorem (Bogomolnaia and Moulin)

There is no mechanism that satisfies ordinal efficiency, strategy-proofness and equal treatment of equals.

So, in a sense, we cannot avoid the tradeoff by trying to find another mechanism.

Then which mechanism, if any, should we use?
Pathak (2008) used NYC’s data to compare RP and PS:

NYC’s supplementary round: RP is currently used. Note that RP is strategy-proof, so we can expect that the submitted preferences are truthful.

Pathak notes the difference is small: about 4,999 students (out of 8,255) receive their top choice from RP, while 5,016 students receive their top choice from PS, a difference of 0.3%.

Based on it, he supported RP over PS.
Kojima and Manea show that PS becomes strategy-proof in large markets (motivated by applications like NYC)

Theorem (Kojima and Manea 2010)

Fix agent i’s utility function u_i, and assume u_i represents strict preferences. There is a finite bound M such that, if $q_a \geq M$ for all $a \in O$, then truthtelling is a dominant strategy for i under PS. The conclusion holds no matter how many other agents are participating in the market.

Remark Truthtelling is an exact dominant strategy in a finitely large markets.

The bound M can be reasonably small: Consider a school context, where a student finds only 10 schools acceptable, and her utility difference between any two consecutively ranked schools is constant. Then truthtelling is a dominant strategy for her in PS if each school has at least 18 seats.
Manipulations have two effects: (1) given the same set of available objects, reporting false preferences may prevent the agent from eating his most preferred available object; (2) reporting false preferences can affect expiration dates of each good.

(1) always hurts the manipulating agent, while (2) can benefit the agent. Intuitively, the effect (2) becomes small as the market becomes large.

A nontrivial part of the formal proof is that (2) becomes very small relative to (1) when the copies of each object type becomes large, so the agents hurt themselves in total.
Asymptotic Equivalence

Consider a sequence of economies, where a \textbf{q-economy} is composed of

- \(q \) copies of each (real) good and infinite copies of \(\phi \), and
- Set of agents: we only assume

\[
\left(\frac{\text{number of agents with preference } \pi \text{ in } q\text{-economy}}{q} \right)
\]

converges as \(q \to \infty \) for every preference \(\pi \) (the limit can be zero).

\begin{tcolorbox}
\textbf{Theorem (Che and Kojima (2009))}

Fix the set of types of goods. The random assignments in RP and PS converge to each other as \(q \to \infty \).

Formally,

\[
\lim_{q \to \infty} \max_{\pi, a} |RP^q_a(\pi) - PS^q_a(\pi)| = 0,
\]

where

\[
RP^q_a(\pi) := \Pr[\text{agents with preference } \pi \text{ get } a \text{ in } q\text{-economy in RP}],
\]

\[
PS^q_a(\pi) := \Pr[\text{agents with preference } \pi \text{ get } a \text{ in } q\text{-economy in PS}].
\]
\end{tcolorbox}
In PS, the random assignment is completely pinned down by the **expiration dates** of the goods. Expiration date T^q_a of good a is the time at which a is completely consumed away.

The probability that an agent receives good a is duration of consuming good a, so

$$\max\{T^q_a - \max\{T^q_b | b \text{ is preferred to } a\}, 0\}.$$
Proof Idea: Find RP-analogues of expiration dates, and show that they converge to expiration dates in PS (in probability).

Alternative formulation of RP.

1. Each agent draws a number iid uniformly distributed in $[0, 1]$.
2. The agent with the smallest draw receives her favorite good, and so on.

Given realized draws, the cutoff \hat{T}_q^a of good a under RP is the draw of the agent who receives the last copy of a.

Since random draws are uniform over $[0, 1]$, an agent will receive good a with probability

$$E[\max\{\hat{T}_q^a - \max\{\hat{T}_q^b|b \text{ is preferred to } a\}, 0\}]$$

draws such that the agent receives a
We show cutoffs of RP converge to expiration dates of PS (in probability).

They are different in general: In PS, a good is consumed proportionately to the number of agents who like it: In RP, a good may be consumed disproportionately to the number of agents who like it because of the randomness of draws.

For RP in large markets, the law of large numbers kicks in: with a very high probability, a good is consumed almost proportionately to the number of agents who like that good best among available goods.

The formal proof makes this intuition precise.
We need to make a convergence argument, because for any finite size, RP and PS may not be exactly equivalent.

Consider a family of replica economies (i.e. agents of each preference type increase proportionately to q).

Proposition

In replica economies, if RP is ordinally efficient/inefficient in the base economy (i.e. $q = 1$), then RP is ordinally efficient/inefficient for all replicas.

Thus, inefficiency of RP does not disappear completely in any finite replica economy, if RP is inefficient in the base economy.

But our theorem says that the “magnitude” of ordinal inefficiency vanishes as markets become large.

Manea (2008): Probability that RP fails exact ordinal efficiency goes to one as the market becomes large.
Consider replica economies of the previous example: \(\tilde{\Omega} = \{a, b, \emptyset\} \). The probability of obtaining less preferred good is positive for all \(q \) but approaches zero as \(q \to \infty \).

Figure: Horizontal axis: Market size \(q \). Vertical axis: \(R^q_{b}(\pi) \).
Extensions

- Existing Priorities (e.g., university house allocation with priority for freshmen)
 - Asymmetric RP: agents draw numbers from different distributions, reflecting the priority structure.
 - Asymmetric PS: agents have different eating speeds.
 - The asymmetric RP and the asymmetric PS converge to the same limit.

- Multiunit demand: Each agent consumes up to $k \geq 2$ units (Kojima, 2008).
 - Once-and-for-all RP: Draw a random order. An agent claims k units at her turn.
 - Draft RP: Draw a random order. Each agent claims one at a turn. After all have taken their turns, draw another random order, and so on.
 - We can introduce two generalizations of PS, and the two versions of RP above converge to these two versions of PS in the limit.
The theorem can be used to approximate RP (remember, RP random assignment is not easy to compute!).

Abdulkadiroglu, Che, and Yasuda (AEJ: Micro 2014) study cardinal utility issue in random assignment: Without any intrinsic priority, the DA with (single)-tie-breaking is exactly the same as RP. As they consider a large market (continuum of students), they can characterize the consumption under RP in terms of cutoffs (=expiration dates).

Azevedo and Leshno (2012 mimeo) consider two-sided matching with continuum of agents. They characterize stable matching in terms of a cutoff score, which is also analogous to cutoff/expiration dates here.
Some reasonable mechanisms may remain ordinally inefficient even in large markets. In this sense, design matters even in large markets.

Ex post inefficient mechanisms such as deferred acceptance algorithm with multiple tie-breaking (Erdil and Ergin; Abdulkadiroglu, Pathak and Roth; Abdulkadiroglu, Che and Yasuda).

Ex post efficiency does not imply ordinal efficiency in the limit: Consider replica economies. The modified RP

1. In the q-economy, draw one number for each set of q “clones” of an agent in the base economy.
2. All the clones with the smallest number receive their most preferred good, all the clones with the second smallest number receive their most preferred remaining good, and so on.

For each q-economy, the random assignment is the same as RP for the base economy.

So the mechanism is ordinally inefficient even in the limit.

Liu and Pycia (2013): axiomatic approach
A random assignment is a matrix $P = (P_{ia})$ where P_{ia} represents the probability that agent i receives good a (i.e., giving marginal distributions).

It’s often easier to work with random assignments directly rather than lotteries over sure outcomes, when considering (utilitarian) welfare, fairness, incentives, etc.

A question: is dealing with random assignments “justified?” I.e., given a random assignment, is there always a lottery over sure outcomes that realizes it?
Consider a problem where each of \(n \) agents receives exactly one of \(n \) goods each.

Each deterministic assignment can be expressed by a **permutation matrix**, i.e., a matrix where

- Each entry is 0 or 1 (1 means receiving a good).
- Each row sums up to one (each agent must receive exactly one good).
- Each column sums up to one (each object must be assigned to exactly one agent).

Any random assignment in this problem is a convex combination of permutation matrices, so it should be a **bistochastic matrix**, i.e.,

- Each entry is nonnegative.
- Each row sums up to one.
- Each column sums up to one.
Theorem (Birkhoff-von Neumann Neumann)

Every bistochastic matrix can be written as a convex combination of permutation matrices.

- This theorem implies that any random assignment can be implemented (why)?
- The theorem implies that any random assignment is induced by a lottery assignment.
Lemma

Let P be a bistochastic matrix that is not a permutation matrix. Then it can be written as a convex combination of two bistochastic matrices,

$$P = \lambda P^1 + (1 - \lambda) P^2,$$

where P^1 and P^2 has the following properties:

1. If P_{ia} is an integer, then P^1_{ia} and P^2_{ia} are integers.
2. P^1 and P^2 has at least one more integral entry than P.

Note that the lemma implies the theorem.

Also, the proof of the lemma provides a practical method to execute the lottery.

Proof: Blackboard (see Hylland and Zeckhauser 1979 for example)
What Random Assignments Can Be Implemented in General?

Based on Budish, Che, Kojima and Milgrom (2013).

- In many applications, there are more complicated constraints.
 - Many-to-one assignment: Multiple seats in each school.
 ⇒ Constraint may be an integer different from one
 - Non-assignment: Opt out to private school.
 ⇒ Constraint may be an inequality, not equality
 - Group-specific quota ("Controlled choice"): Affirmative action, Gender Balance, Test score balance, District Favoritism
 ⇒ Sub-column constraint
 - Flexible capacity: the relative sizes of alternative programs across schools or within each school may be adjustable.
 ⇒ Multi-column constraint

- Budish et al. identify a condition on the constraint structure (called "bihierarchy") that is necessary and sufficient for the existence of a lottery over sure outcomes that implements any given random assignment.
\begin{itemize}
 \item \(N, O\) are the sets of agents and goods,
 \item A (generalized) random assignment is a matrix
 \[P = (P_{ia}) \in \mathbb{R}^{|N| \times |O|}. \]
 \item \(\mathcal{H} \subset 2^{N \times O}\) is a collection of subsets of \(N \times O\), called a \textbf{constraint structure}.
 \item Integers \(q_S \leq \bar{q}_S\) for each \(S \in \mathcal{H}\).
 \begin{itemize}
 \item Each set \(S \in \mathcal{H}\) is understood to be a “constraint set,” that is, a set of elements on which a constraint is imposed. \(q_S\) and \(\bar{q}_S\) are floor and ceiling (minimum and maximum) constraints, respectively. That is, we will consider random assignment \(P\) satisfying
 \[
 q_S \leq \sum_{(i,a) \in S} P_{ia} \leq \bar{q}_S,
 \]
 for each \(S \in \mathcal{H}\).
 \end{itemize}
\end{itemize}
Decomposability

- Constraint structure \mathcal{H} is **universally decomposable** if, for each $(q_S, \overline{q}_S)_{S \in \mathcal{H}}$ and P with $q_S \leq \sum_{(i,a) \in S} P_{ia} \leq \overline{q}_S$ for all $S \in \mathcal{H}$, there exists a convex decomposition

$$P = \sum_{k=1}^{K} \lambda^k P^k,$$

such that

1. each P^k is integer-valued, and
2. $q_S \leq \sum_{(i,a) \in S} P^k_{ia} \leq \overline{q}_S$, for each k and $S \in \mathcal{H}$.

- Decomposability means “Every P satisfying all the given constraints in \mathcal{H} can be expressed as a convex combination of integral matrices satisfying the constraints.” In other words, any random assignment satisfying constraints in \mathcal{H} can be implemented as a lottery over deterministic assignments that satisfy constraints in \mathcal{H}.
What property of the constraint structure \mathcal{H} enables decomposability?

$\mathcal{H} \subseteq 2^{N \times O}$ is a hierarchy (a.k.a. laminar family) if $S \cap S' = \emptyset$ or $S \subset S'$ or $S' \subset S$ for any $S, S' \in \mathcal{H}$.

$$P = \begin{pmatrix}
P_{1a} & P_{1b} & P_{1c} \\
P_{2a} & P_{2b} & P_{2c} \\
P_{3a} & P_{3b} & P_{3c}
\end{pmatrix}$$
$\mathcal{H} \subseteq 2^{N \times O}$ is a **bihierarchy** if it can be partitioned into two hierarchies.

Theorem

If \mathcal{H} forms a bihierarchy, then it is universally decomposable.

- **Proof Sketch:** Recognize that the set of feasible random assignments $\{P : q_S \leq \sum_{(i,a) \in S} P_{ia} \leq \overline{q}_S$, for each $S \in \mathcal{H}\}$ forms a convex polyhedron. Any random assignment is thus a convex combination of extreme points. Suffices to show that the extreme points are integer-valued. This result follow from Hoffman and Kruskal (1956) and Edmonds (1970).

- More important is “constructive algorithm” that works fast. We provide one based on a network flow method.
What can go wrong without bihierarchy?

- 2 goods and 2 agents,

\[\mathcal{H} = \{(1, a), (1, b)\}, \{(1, a), (2, a)\}, \{(1, b), (2, a)\}\], with each constraint being one.

\[P = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix} =? \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \]

Lemma

If \(\mathcal{H} \) has an odd cycle of intersecting sets, then \(\mathcal{H} \) is not universally decomposable.
Not generally but in a natural bilateral matching setting.

Theorem: Maximal domain

Suppose \mathcal{H} contains all “rows” (\{i\} × O, $\forall i \in N$) and all “columns” (\$N \times \{a\}$, $\forall a \in O$). If \mathcal{H} is not bihierarchical, then \mathcal{H} is not universally decomposable.

In many applications, row and column constraints are present. If this is the case, a bihierarchical structure is necessary for BvN decomposition.
Example of a bihierarchy: Classical One to One Assignment

\[P = \begin{pmatrix} P_{1a} & P_{1b} & P_{1c} \\ P_{2a} & P_{2b} & P_{2c} \\ P_{3a} & P_{3b} & P_{3c} \end{pmatrix} \]

The Birkhoff-von Neumann Theorem is a corollary of the Theorem.
Suppose a and b are two programs within a school; each program has maximum capacity of 2, and the school has maximum capacity of 3.

\[
P = \begin{pmatrix}
P_{1a} & P_{1b} & P_{1c} \\
P_{2a} & P_{2b} & P_{2c} \\
P_{3a} & P_{3b} & P_{3c}
\end{pmatrix}
\]
Suppose students 1 and 2 are ethnic majority, and 2 and 3 are male. If school a has a limit on ethnic majority while school b has a limit on male,

$$
P = \begin{pmatrix}
P_{1a} & P_{1b} & P_{1c} \\
P_{2a} & P_{2b} & P_{2c} \\
P_{3a} & P_{3b} & P_{3c}
\end{pmatrix}
$$
• Social planner needs to assign at most one object to each agent (e.g., school choice, housing allocation).
• Each agent has strict preferences over O.
• Some additional constraints are allowed; affirmative action constraints, flexible capacity, etc.
• Suppose constraint sets \mathcal{H} form a hierarchy.
 • \mathcal{H} contains “rows.”
 • There are only ceiling constraints.
• **Random priority** (RP) mechanism: randomly order agents, and let each agent receive the favorite remaining good following the order, subject to the constraints described above. Ex post efficient but not ex ante efficient.
Let \(N = \{1, 2, 3, 4\} \), \(O = \{a, b, c, \emptyset\} \). Each good has quota of one, and only two out of three goods can actually be produced.

1 and 2 like \(a, b, \emptyset \) (in this order),

3 and 4 like \(c, b, \emptyset \).

RP produces random assignment:

\[
RP = \begin{pmatrix}
\frac{5}{12} & \frac{1}{12} & 0 & \frac{1}{2} \\
\frac{5}{12} & \frac{1}{12} & 0 & \frac{1}{2} \\
0 & \frac{1}{12} & \frac{5}{12} & \frac{1}{2} \\
0 & \frac{1}{12} & \frac{5}{12} & \frac{1}{2}
\end{pmatrix}.
\]

Everyone prefers

\[
P' = \begin{pmatrix}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}.
\]
The agents regard the goods as “divisible” in probability units. Time runs continuously from 0 to 1, and each agent simultaneously “eats” her favorite “available” good at unit speed at each moment of time.

The end outcome is a random assignment, implementable by BvN.

The random assignment is “ordinally efficient,” and “envy free.”
As before: time runs continuously from 0 to 1, and each agent “eats” her favorite “available” good at speed one at each moment of time.

But, modify “available”: we say that object \(a \) is “available” to agent \(i \) if and only if the total amount of probability shares eaten away within \(S \) is less than the quota \(q_S \) for every constraint set \(S \ni (i, a) \).

The end outcome is a random assignment that satisfies bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible” envy free.

May enhance the applicability of PS.
The Hylland Zeckhauser mechanism produces competitive equilibrium outcome in random assignment in one-to-one assignment. We generalize the mechanism to environments in which

- agents demand arbitrary multiple units with additively separable preferences over objects
- agent faces constraints over hierarchical sets, e.g., in course allocation
 - Scheduling constraints: “no two classes that meet at the same time,” or
 - Curricular constraints: “no more than two classes in finance”
Course-allocation mechanisms currently used have flaws in fairness and efficiency (Budish and Cantillon, 2009).

For the case of simple additive-separable preferences, the HZ generalization is attractive: efficient, interim envy free, and strategyproof in the large economy.

Even nonlinear preferences, such as diminishing marginal utilities, can be encoded by the judicious design of message spaces: Milgrom (2010)’s assignment messages.
Suppose agents may be assigned to multiple objects, and they have linear preferences in the values of assigned objects, \(\{v_{ia}\} \).

There are multiple ways to implement a random assignment, some less fair than others.

Example: \(N = \{1, 2\}; O = \{a, b, c, d\} \), both have preferences \(a \succ b \succ c \succ d \); each agent demands 2 units.

A random assignment

\[
P = \begin{pmatrix} 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \end{pmatrix}
\]

can be decomposed as

\[
= \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}
\]

can also be decomposed as

\[
= \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
\]
Application: Multi-Unit Assignment with Ex Post Fairness

Theorem: One-sided utility guarantee

Given any random assignment $\mathbf{P} = (P_{ia})$, there exists a BvN decomposition of \mathbf{P} such that, for each $i \in N$, each ex post assignment in the decomposition gives i the expected utility within $\Delta_i := \max \{v_{ia} - v_{ib} | a, b \in O, P_{ia}, P_{ib} \notin \mathbb{Z}\}$ of that under \mathbf{P}.
Add a hierarchical set of “artificial” constraints in a way that bounds the extent to which each agent’s utility can vary over different resolutions of the random assignment.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

This method works for more general (heterogenous preferences) cases.
Suppose both N and O are agents with strict preferences on the other side. Given any random assignment $P = [P_{ia}]$, there exists a BvN decomposition of P such that, for each $i \in N$ and $a \in O$, each ex post assignment in the decomposition gives i the expected utility within $\Delta_i := \max \{ v_{ia} - v_{ib} | a, b \in O, P_{ia}, P_{ib} \notin \mathbb{Z} \}$ of that under P, and $a \in O$ the expected utility within $\Delta_a := \max \{ v_{ia} - v_{ja} | i, j \in N, P_{ia}, P_{ja} \notin \mathbb{Z} \}$ of that under P.
Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in each league, must engage in interleague play — 6 games for each team against the teams in the other league. Wish to design equitable matchups.

List the teams in order of past performance (win/loss).

\[
\begin{array}{c|cccc}
 & a & b & c & d \\
\hline
\text{AL} & 1 & 1.5 & 1.5 & 1.5 & 1.5 \\
\text{NL} & 2 & 1.5 & 1.5 & 1.5 & 1.5 \\
 & 3 & 1.5 & 1.5 & 1.5 & 1.5 \\
 & 4 & 1.5 & 1.5 & 1.5 & 1.5 \\
\end{array}
\]
One Possible Outcome

<table>
<thead>
<tr>
<th>AL</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
The methodology can be extended to a general hypergraph \(\mathcal{X} = (X, \mathcal{H}) \) where \(X \) is a finite set and \(\mathcal{H} \) is a collection of subsets from \(X \).

But we obtain a pair of impossibility of decomposition in:

1. Matching with more than 2-sides.
2. One-sided ("roommate") matching.
3. General constraint structures: Che, Kim, and Mierendorff (2013, implementability under paramodularity), Akbarpour and Nikzad (2014, approximate implementability)
Extending the PS mechanism:
- Weak preferences: Katta and Sethuraman (2006)
- Initial endowment ("existing tenants"): Yilmaz (2008, 2009)
- Group-specific quotas, flexible production, etc: Budish, Che, Kojima and Milgrom (2010), Ball (in progress)
- Priorities: Kesten and Unver (2009)

Characterizing the PS mechanism (Hashimoto and Hirata, Kesten, Kurino, and Unver 2010, Bogomolnaia and Heo 2010)
- An equivalent representation: Kesten (2006),
- Stronger efficiency: Featherstone (2013)
- Incentives: Balbuzanov (2014), Mennle and Seuken (2014a, 2014b)
The popular RP mechanism is challenged by the new PS mechanism, which may be more efficient.

PS becomes strategy-proof in large markets, and RP and PS mechanisms converge to the same limit as the copies of each good becomes infinitely large.

Both RP and PS may be good solutions in large markets.

Conducting lottery mechanisms: Generalizing mechanisms to deal with practical features.

Further topics:
- How well these mechanisms work in large finite economies.
- Asymptotic equivalence for other mechanisms.
- Consider more practical (more “complex”) environments, for applications?