Chapter 4: Kidney Exchange

Fuhito Kojima

February 12, 2009

Yale University. http://sites.google.com/site/fuhitokojimaeconomics/.
Transplant is an important treatment of serious kidney disease.
Kidney Exchange

Transplant is an important treatment of serious kidney disease.

Over 70000 patients are on waiting lists for kidney in the U.S.
Transplant is an important treatment of serious kidney disease.

Over 70,000 patients are on waiting lists for kidney in the U.S.

In 2006, there were
Transplant is an important treatment of serious kidney disease.

Over 70,000 patients are on waiting lists for kidney in the U.S.

In 2006, there were

1. 10,659 transplants from diseased donors,
Transplant is an important treatment of serious kidney disease.

Over 70,000 patients are on waiting lists for kidney in the U.S.

In 2006, there were

1. 10,659 transplants from diseased donors,
2. 6,428 transplants from living donors, while
Transplant is an important treatment of serious kidney disease.

Over 70000 patients are on waiting lists for kidney in the U.S.

In 2006, there were

1. 10659 transplants from diseased donors,
2. 6428 transplants from living donors, while
3. 3875 patients died while on the waiting list.
Kidneys cannot be bought and sold

Buying and selling kidneys is illegal in the U.S. as well as many other countries.
Buying and selling kidneys is illegal in the U.S. as well as many other countries.

Section 301 of the National Organ Transplant Act states:

“it shall be unlawful for any person to knowingly acquire, receive or otherwise transfer any human organ for valuable consideration for use in human transplantation.”
Kidneys cannot be bought and sold

Buying and selling kidneys is illegal in the U.S. as well as many other countries.

Section 301 of the National Organ Transplant Act states:

“it shall be unlawful for any person to knowingly acquire, receive or otherwise transfer any human organ for valuable consideration for use in human transplantation.”

Given that constraint, donation is the most important source of kidneys.
There are two sources of donation:
There are two sources of donation:

1. **Deceased donors**: A centralized mechanism has been used for allocation of deceased donor kidneys.
There are two sources of donation:

1. **Deceased donors:** A centralized mechanism has been used for allocation of deceased donor kidneys.

2. **Living donors:** Living donors usually come from friends or relatives of a patient (because the monetary transaction is prohibited). Live donation has been increasing recently.

<table>
<thead>
<tr>
<th>Donor Types</th>
<th>2008</th>
<th>1998</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>All donors</td>
<td>10,920</td>
<td>9,761</td>
<td>5,693</td>
</tr>
<tr>
<td>Deceased donors</td>
<td>5,992</td>
<td>5,339</td>
<td>3,876</td>
</tr>
<tr>
<td>Live donors</td>
<td>4,928</td>
<td>4,422</td>
<td>1,817</td>
</tr>
</tbody>
</table>

Table: Number of donors by donor types. Data obtained at http://www.optn.org/
Figure: Live donors by relationship to patients (thanks to Al Roth for providing the graph).
For a successful transplant, the donor kidney needs to be **compatible** with the patient.
For a successful transplant, the donor kidney needs to be compatible with the patient.

Blood type compatibility: There are four blood types, O, A, B and AB.

- O type patients can receive kidneys from O type donors
- A type patients can receive kidneys from O or A type donors
- B type patients can receive kidneys from O or B type donors
- AB type patients can receive kidneys from donors of any blood type (that is, O, A, B or AB)
For a successful transplant, the donor kidney needs to be **compatible** with the patient.

1. **Blood type compatibility:** There are four blood types, O, A, B and AB.
 - O type patients can receive kidneys from O type donors
 - A type patients can receive kidneys from O or A type donors
 - B type patients can receive kidneys from O or B type donors
 - AB type patients can receive kidneys from donors of any blood type (that is, O, A, B or AB)

2. There is another compatibility issue around some proteins called HLA Tissue Compatibility.
For a successful transplant, the donor kidney needs to be compatible with the patient.

1. Blood type compatibility: There are four blood types, O, A, B and AB.
 - O type patients can receive kidneys from O type donors
 - A type patients can receive kidneys from O or A type donors
 - B type patients can receive kidneys from O or B type donors
 - AB type patients can receive kidneys from donors of any blood type (that is, O, A, B or AB)

2. There is another compatibility issue around some proteins called HLA Tissue Compatibility.

A problem with transplant from live donors: transplant is carried out if the donor kidney is compatible with the patient. Otherwise the willing donor goes home and the patient cannot get transplant.
For a successful transplant, the donor kidney needs to be **compatible** with the patient.

1. **Blood type compatibility:** There are four blood types, O, A, B and AB.
 - O type patients can receive kidneys from O type donors
 - A type patients can receive kidneys from O or A type donors
 - B type patients can receive kidneys from O or B type donors
 - AB type patients can receive kidneys from donors of any blood type (that is, O, A, B or AB)

2. **There is another compatibility issue around some proteins called HLA Tissue Compatibility.**

A problem with transplant from live donors: transplant is carried out if the donor kidney is compatible with the patient. **Otherwise the willing donor goes home and the patient cannot get transplant.**

Is there any way to increase the number and quality of transplant?
A paired exchange: Match two patient-donor pairs (say pair 1 and 2) where
A paired exchange: Match two patient-donor pairs (say pair 1 and 2) where

- The donor of pair 1 is incompatible with the patient of pair 1 but is compatible with the patient of pair 2, and
A paired exchange: Match two patient-donor pairs (say pair 1 and 2) where

- The donor of pair 1 is incompatible with the patient of pair 1 but is compatible with the patient of pair 2, and
- The donor of pair 2 is incompatible with the patient of pair 2 but is compatible with the patient of pair 1.
A **paired exchange**: Match two patient-donor pairs (say pair 1 and 2) where

- The donor of pair 1 is incompatible with the patient of pair 1 but is compatible with the patient of pair 2, and
- The donor of pair 2 is incompatible with the patient of pair 2 but is compatible with the patient of pair 1.

In such a case, the donor 1 can give her kidney to the patient 2 and the donor 2 can give his kidney to the patient 1 in return.
A paired exchange: Match two patient-donor pairs (say pair 1 and 2) where

- The donor of pair 1 is incompatible with the patient of pair 1 but is compatible with the patient of pair 2, and
- The donor of pair 2 is incompatible with the patient of pair 2 but is compatible with the patient of pair 1.

In such a case, the donor 1 can give her kidney to the patient 2 and the donor 2 can give his kidney to the patient 1 in return.

Take a look at the web page of Alliance for Paired Donation at http://www.paireddonation.org/anim.htm
A list exchange: “Match” one incompatible patient-donor pair and the deceased donor waiting list. That is,
A **list exchange**: “Match” one incompatible patient-donor pair and the deceased donor waiting list. That is,

- The donor of the incompatible pair donates his/her kidney to someone on the waiting list, and
A list exchange: “Match” one incompatible patient-donor pair and the deceased donor waiting list. That is,

- The donor of the incompatible pair donates his/her kidney to someone on the waiting list, and
- The patient of the incompatible pair is placed at the top of the waiting list.
In 2004, the Renal Transplant Oversight Committee of New England approved the establishment of a clearinghouse for kidney exchange.
In 2004, the Renal Transplant Oversight Committee of New England approved the establishment of a clearinghouse for kidney exchange.

Roth, Sonmez and Unver as well as doctors design the clearinghouse.
In 2004, the Renal Transplant Oversight Committee of New England approved the establishment of a clearinghouse for kidney exchange.

Roth, Sonmez and Unver as well as doctors design the clearinghouse.

Potential issues include
In 2004, the Renal Transplant Oversight Committee of New England approved the establishment of a clearinghouse for kidney exchange.

Roth, Sonmez and Unver as well as doctors design the clearinghouse.

Potential issues include

1. Efficiency (Pareto efficiency; maximizing number of transplantation)
2. Incentives (Strategy-proofness)
3. Fairness
Do patients and doctors behave strategically? Here is one example indicating they do.
Do patients and doctors behaves strategically? Here is one example indicating they do.

A news report by Reuters (2003-7-29)

Three Chicago hospitals were accused of fraud by prosecutors on Monday for manipulating diagnoses of transplant patients to get them new livers. Two of the institutions paid fines to settle the charges. “By falsely diagnosing patients and placing them in intensive care to make them appear more sick than they were, these three highly regarded medical centers made patients eligible for liver transplants ahead of others who were waiting for organs in the transplant region,” said Patrick Fitzgerald, the U.S. attorney for the Northern District of Illinois.
A kidney exchange model is composed of

1. A set of donor-patient (kidney-transplant) pairs \{ (k_1, t_1), ..., (k_n, t_n) \}
2. A preference over \{ k_1, ..., k_n \} \cup \{ w \} for each \(t_i \), where \(w \) is priority in the waitlist (in exchange of donating kidney \(k_i \)).

A matching is a function that specifies which patient obtains which kidney (or waitlist). We assume \(w \) can be matched with any number of patients.

A mechanism is a procedure to select a matching for each problem.
A kidney exchange model is composed of

1. A set of donor-patient (kidney-transplant) pairs \{ (k_1, t_1), \ldots, (k_n, t_n) \},
A kidney exchange model is composed of

1. A set of donor-patient (kidney-transplant) pairs
 \[\{(k_1, t_1), \ldots, (k_n, t_n)\}, \]

2. A preference over \(\{k_1, \ldots, k_n\} \cup \{w\} \) for each \(t_i \), where \(w \) is priority in the waitlist (in exchange of donating kidney \(k_i \).)
A kidney exchange model is composed of

1. A set of donor-patient (kidney-transplant) pairs \(\{(k_1, t_1), \ldots, (k_n, t_n)\}\),

2. A preference over \(\{k_1, \ldots, k_n\} \cup \{w\}\) for each \(t_i\), where \(w\) is priority in the waitlist (in exchange of donating kidney \(k_i\).)

A matching is a function that specify which patient obtains which kidney (or waitlist). We assume \(w\) can be matched with any number of patients.
A kidney exchange model is composed of

1. A set of donor-patient (kidney-transplant) pairs
 \[\{(k_1, t_1), \ldots, (k_n, t_n)\}, \]

2. A preference over \(\{k_1, \ldots, k_n\} \cup \{w\} \) for each \(t_i \), where \(w \) is priority in the waitlist (in exchange of donating kidney \(k_i \).)

A **matching** is a function that specify which patient obtains which kidney (or waitlist). We assume \(w \) can be matched with any number of patients.

A **mechanism** is a procedure to select a matching for each problem.
In Roth, Sonmez and Unver (2004) it is assume that...
In Roth, Sonmez and Unver (2004) it is assume that

1. There is no limit on the number of pairs participating in one exchange.
In Roth, Sonmez and Unver (2004) it is assume that

1. There is no limit on the number of pairs participating in one exchange.
2. Patients have strict preferences over compatible kidneys and the waitlist:
In Roth, Sonmez and Unver (2004) it is assume that

1. There is no limit on the number of pairs participating in one exchange.

2. Patients have strict preferences over compatible kidneys and the waitlist: Some justification by Opelz (1997). He shows that, in his data, increase in the number of HLA mismatch decreases the likelihood of kidney survival. Other characteristics such as body size and donor age affect kidney survival.
With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:
Connection with House allocation with Existing Tenants

With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:

<table>
<thead>
<tr>
<th>Kidney Exchange</th>
<th>House allocation with existing tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient</td>
<td>agent (tenant)</td>
</tr>
<tr>
<td>donor</td>
<td>occupied house</td>
</tr>
<tr>
<td>waitlist</td>
<td>vacant house</td>
</tr>
</tbody>
</table>
With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:

<table>
<thead>
<tr>
<th>Kidney Exchange</th>
<th>House allocation with existing tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient</td>
<td>agent (tenant)</td>
</tr>
<tr>
<td>donor</td>
<td>occupied house</td>
</tr>
<tr>
<td>waitlist</td>
<td>vacant house</td>
</tr>
</tbody>
</table>

Also from the correspondence, we could include other features:
Connection with House allocation with Existing Tenants

With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:

<table>
<thead>
<tr>
<th>Kidney Exchange</th>
<th>House allocation with existing tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient</td>
<td>agent (tenant)</td>
</tr>
<tr>
<td>donor</td>
<td>occupied house</td>
</tr>
<tr>
<td>waitlist</td>
<td>vacant house</td>
</tr>
</tbody>
</table>

Also from the correspondence, we could include other features:

1. Good Samaritan donors (donors who give kidneys although they are not paired with an incompatible patient) can be treated as vacant houses,
Connection with House allocation with Existing Tenants

With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:

<table>
<thead>
<tr>
<th>Kidney Exchange</th>
<th>House allocation with existing tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient</td>
<td>agent (tenant)</td>
</tr>
<tr>
<td>donor</td>
<td>occupied house</td>
</tr>
<tr>
<td>waitlist</td>
<td>vacant house</td>
</tr>
</tbody>
</table>

Also from the correspondence, we could include other features:

1. Good Samaritan donors (donors who give kidneys although they are not paired with an incompatible patient) can be treated as vacant houses,
2. Patients without a paired donor can be treated as “newcomers.”
Connection with House allocation with Existing Tenants

With the assumption of RSU (2004), the kidney exchange problem is mathematically (not necessarily substantively!) very similar to house allocation with existing tenants:

<table>
<thead>
<tr>
<th>Kidney Exchange</th>
<th>House allocation with existing tenants</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient</td>
<td>agent (tenant)</td>
</tr>
<tr>
<td>donor</td>
<td>occupied house</td>
</tr>
<tr>
<td>waitlist</td>
<td>vacant house</td>
</tr>
</tbody>
</table>

Also from the correspondence, we could include other features:

1. Good Samaritan donors (donors who give kidneys although they are not paired with an incompatible patient) can be treated as vacant houses,

2. Patients without a paired donor can be treated as “newcomers.”

One difference is that the waitlist w can be matched to multiple patients, but this can be accommodated straightforwardly.
YRMH-IGYT (TTC)

Because the mathematical structure is very similar to house allocation with existing tenants, a promising solution is
YRMH-IGYT (TTC)

Because the mathematical structure is very similar to house allocation with existing tenants, a promising solution is

YRMH-IGYT mechanism (a.k.a. TTC mechanism).
YRMH-IGYT (TTC)

Because the mathematical structure is very similar to house allocation with existing tenants, a promising solution is

YRMH-IGYT mechanism (a.k.a. TTC mechanism).

1. Let the agent with the top priority receive her first choice kidney, the second agent his top choice among the remaining kidney and so on, until someone requests the kidney of a paired donor.
Because the mathematical structure is very similar to house allocation with existing tenants, a promising solution is

YRMH-IGYT mechanism (a.k.a. TTC mechanism).

1. Let the agent with the top priority receive her first choice kidney, the second agent his top choice among the remaining kidney and so on, until someone requests the kidney of a paired donor.

2. If the paired patient whose paired donor is requested has already received a kidney, then proceed the assignment to the next agent. Otherwise, insert the paired patient at the top of the priority order and proceed with the procedure.
YRMH-IGYT (TTC)

Because the mathematical structure is very similar to house allocation with existing tenants, a promising solution is

YRMH-IGYT mechanism (a.k.a. TTC mechanism).

1. Let the agent with the top priority receive her first choice kidney, the second agent his top choice among the remaining kidney and so on, until someone requests the kidney of a paired donor.

2. If the paired patient whose paired donor is requested has already received a kidney, then proceed the assignment to the next agent. Otherwise, insert the paired patient at the top of the priority order and proceed with the procedure.

3. If at any step a cycle forms, assign these kidneys by letting them exchange, and then proceed with the algorithm.
From the last lecture, we know that TTC is the big winner:

Theorem

the *TTC mechanism is*
From the last lecture, we know that TTC is the big winner:

Theorem

the TTC mechanism is Pareto efficient,
From the last lecture, we know that TTC is the big winner:

Theorem

the TTC mechanism is *Pareto efficient, strategy-proof, and*
From the last lecture, we know that TTC is the big winner:

Theorem

the TTC mechanism is *Pareto efficient, strategy-proof, and individually rational.*
From the last lecture, we know that TTC is the big winner:

Theorem

The TTC mechanism is *Pareto efficient, strategy-proof, and individually rational*.

Remarks: (1) In RSU they consider many variants of the TTC mechanism, which they call TTCC (Top Trading Cycles and Chains) mechanisms. The one which they pick as the winner corresponds to TTC (this point is formally pointed out by Krishna and Wang 2007).
From the last lecture, we know that TTC is the big winner:

Theorem

the TTC mechanism is Pareto efficient, strategy-proof, and individually rational.

Remarks: (1) In RSU they consider many variants of the TTC mechanism, which they call TTCC (Top Trading Cycles and Chains) mechanisms. The one which they pick as the winner corresponds to TTC (this point is formally pointed out by Krishna and Wang 2007).

(2) Sonmez and Unver (2008) give axiomatic characterization of the TTC mechanism, thus adding one more justification of using this mechanism.
According to the authors, RSU discussed the design with doctors and they say
According to the authors, RSU discussed the design with doctors and they say

1. Only pairwise exchanges may be possible (at least initially) because all surgeries should be conducted simultaneously (contracting is illegal).
Design 2 (RSU 2005)

According to the authors, RSU discussed the design with doctors and they say

1. Only pairwise exchanges may be possible (at least initially) because all surgeries should be conducted simultaneously (contracting is illegal).

2. Patients may have dichotomous preferences (0-1 preferences), that is, all compatible kidneys are equally good and all incompatible kidneys are equally bad, at least as first approximation.
According to the authors, RSU discussed the design with doctors and they say

1. Only pairwise exchanges may be possible (at least initially) because all surgeries should be conducted simultaneously (contracting is illegal).

2. Patients may have dichotomous preferences (0-1 preferences), that is, all compatible kidneys are equally good and all incompatible kidneys are equally bad, at least as first approximation.

3. List exchange may be ruled out, because of the concern that it harms O blood-type patients.
According to the authors, RSU discussed the design with doctors and they say

1. Only pairwise exchanges may be possible (at least initially) because all surgeries should be conducted simultaneously (contracting is illegal).

2. Patients may have dichotomous preferences (0-1 preferences), that is, all compatible kidneys are equally good and all incompatible kidneys are equally bad, at least as first approximation.

3. List exchange may be ruled out, because of the concern that it harms O blood-type patients.

4. Compatible pairs may not participate in an exchange.
Now we can think of a market as
Now we can think of a market as

N: the set of incompatible donor-patient pairs
Now we can think of a market as

1. N: the set of incompatible donor-patient pairs
2. $R = (r_{ij})_{i,j \in N}$: the mutual compatibility matrix, that is,

$$r_{ij} = \begin{cases}
1 & \text{if } i \text{ and } j \text{ are mutually compatible}, \\
0 & \text{otherwise} \end{cases}$$
A matching is a function μ form N to itself such that
A matching is a function μ from N to itself such that

1. $\mu(i) = j$ if and only if $\mu(j) = i$ (only pairwise exchanges are possible), and
A matching is a function μ from N to itself such that

1. $\mu(i) = j$ if and only if $\mu(j) = i$ (only pairwise exchanges are possible), and

2. if $i \neq j$ and $\mu(i) = j$, then $r_{ij} = 1$ (only mutually compatible exchanges are possible).
A matching is a function μ from N to itself such that

1. $\mu(i) = j$ if and only if $\mu(j) = i$ (only pairwise exchanges are possible), and
2. if $i \neq j$ and $\mu(i) = j$, then $r_{ij} = 1$ (only mutually compatible exchanges are possible).

A matching is Pareto efficient if there is no other matching that makes every patient weakly better off and at least one patient strictly better off.
A matching is a function μ from N to itself such that

1. $\mu(i) = j$ if and only if $\mu(j) = i$ (only pairwise exchanges are possible), and

2. if $i \neq j$ and $\mu(i) = j$, then $r_{ij} = 1$ (only mutually compatible exchanges are possible).

A matching is Pareto efficient if there is no other matching that makes every patient weakly better off and at least one patient strictly better off.

A mechanism is strategy-proof if no pair benefits by misreporting who is mutually compatible with them.
Efficiency Property

Proposition (Lemma 1 of RSU (2005))

All Pareto optimal matchings match the same number of pairs.
Proposition (Lemma 1 of RSU (2005))

All Pareto optimal matchings match the same number of pairs.

This claim does not hold if larger exchanges are possible.
Consider the following priority mechanism (serial dictatorship):

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),
2. If there is any matching in which the top priority pair is matched, then match that pair. Otherwise, skip that pair.
3. Match the second-top priority pair if there is such a matching that also match the first pair (if they were matched in the previous step), then match the pair. Otherwise, skip that pair.
4. Match the kth top priority pair if there is such a matching that also match all the pairs that were matched in previous steps, then match the pair. Otherwise, skip that pair.
Consider the following **priority mechanism (serial dictatorship)**:

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),
The priority mechanism

Consider the following priority mechanism (serial dictatorship):

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),
2. If there is any matching in which the top priority pair is matched, then match that pair. Otherwise, skip that pair.
The priority mechanism

Consider the following \textbf{priority mechanism (serial dictatorship)}:

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),

2. If there is any matching in which the top priority pair is matched, then match that pair. Otherwise, skip that pair.

3. Match the second-top priority pair if there is such a matching that also match the first pair (if they were matched in the previous step), then match the pair. Otherwise, skip that pair.
The priority mechanism

Consider the following **priority mechanism (serial dictatorship)**:

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),

2. If there is any matching in which the top priority pair is matched, then match that pair. Otherwise, skip that pair.

3. Match the second-top priority pair if there is such a matching that also match the first pair (if they were matched in the previous step), then match the pair. Otherwise, skip that pair.
The priority mechanism

Consider the following priority mechanism (serial dictatorship):

1. Order pairs in some way (ordering could be random or favor waiting time, etc.),

2. If there is any matching in which the top priority pair is matched, then match that pair. Otherwise, skip that pair.

3. Match the second-top priority pair if there is such a matching that also match the first pair (if they were matched in the previous step), then match the pair. Otherwise, skip that pair.

4. Match the k^{th} top priority pair if there is such a matching that also match all the pairs that were matched in previous steps, then match the pair. Otherwise, skip that pair.
The priority mechanism

Theorem (RSU 2005)

The priority mechanism is Pareto efficient.
The priority mechanism

Theorem (RSU 2005)

The priority mechanism is Pareto efficient.

The priority mechanism is strategy-proof.
The priority mechanism

Theorem (RSU 2005)

The priority mechanism is Pareto efficient.
The priority mechanism is strategy-proof.

The reason for this claim is very intuitive (why?).
An exchange involving more than two pairs may be difficult, but may not be infeasible.
An exchange involving more than two pairs may be difficult, but may not be infeasible.

Still, the logistical constraints are likely to matter: two-way (pairwise) exchanges are easier than three-way exchanges, and three-way exchanges are easier than four-way exchanges, and so on.
An exchange involving more than two pairs may be difficult, but may not be infeasible.

Still, the logistical constraints are likely to matter: two-way (pairwise) exchanges are easier than three-way exchanges, and three-way exchanges are easier than four-way exchanges, and so on.

How much efficiency gain can we obtain through larger exchanges?
Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

If only two-way exchanges are possible:

If three-way exchanges are also feasible:

Three-way Exchanges Can Add A Lot of Transplants

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Three-way Exchanges Can Add A Lot of Transplants

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Assume there is no tissue rejection between patients and other patients’ donors.
Three-way Exchanges Can Add A Lot of Transplants

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way exchanges are possible:
Three-way Exchanges Can Add A Lot of Transplants

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way exchanges are possible: (A-B,B-A), (A-A,A-A), (O-B,B-O).
Three-way Exchanges Can Add A Lot of Transplants

Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Assume there is is no tissue rejection between patients and other patients’ donors.

1. If only two-way exchanges are possible: (A-B,B-A), (A-A,A-A), (O-B,B-O).
2. If three-way exchanges are also feasible:
Example: A pair is denoted as type x-y if the patient and donor are ABO blood-types x and y, respectively. Consider a population composed of

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way exchanges are possible:
2. If three-way exchanges are also feasible:
The three-way exchanges allow
The three-way exchanges allow

1. an odd number of A-A pairs to be transplanted (instead of only an even number with two-way exchanges), and
The three-way exchanges allow

1. an odd number of A-A pairs to be transplanted (instead of only an even number with two-way exchanges), and
2. O-type donors can facilitate three transplants rather than two.
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. **O-A, A-B, B-AB (blood-type incompatible),**
2. **AB-O (positive crossmatch).**

- If only two-way and three-way exchanges are possible: $(O-A, A-B, AB-O)$.
- If four-way exchanges are also feasible: $(AB-O, O-A, A-B, A-AB)$.

Fuhito Kojima
Chapter 4: Kidney Exchange
Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).

Assume there is no tissue rejection between patients and other patients’ donors.
Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way and three-way exchanges are possible:

Four-way Exchanges Can Add Only A Little
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way and three-way exchanges are possible: (O-A, A-B, AB-O).
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way and three-way exchanges are possible: (O-A, A-B, AB-O).
2. If four-way exchanges are also feasible:
Four-way Exchanges Can Add Only A Little

Example: Consider a population composed of

1. O-A, A-B, B-AB (blood-type incompatible),
2. AB-O (positive crossmatch).

Assume there is no tissue rejection between patients and other patients’ donors.

1. If only two-way and three-way exchanges are possible: (O-A, A-B, AB-O).
2. If four-way exchanges are also feasible: (AB-O, O-A, A-B, A-AB).
However, a situation like the above example is rare, because
However, a situation like the above example is rare, because AB-type is rare (only 3.85 percent in U.S. population),

<table>
<thead>
<tr>
<th>Patient ABO Blood Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48.14 %</td>
</tr>
<tr>
<td>A</td>
<td>33.73 %</td>
</tr>
<tr>
<td>B</td>
<td>14.28 %</td>
</tr>
<tr>
<td>AB</td>
<td>3.85 %</td>
</tr>
</tbody>
</table>
However, a situation like the above example is rare, because

1. AB-type is rare (only 3.85 percent in U.S. population),

<table>
<thead>
<tr>
<th>Patient ABO Blood Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48.14 %</td>
</tr>
<tr>
<td>A</td>
<td>33.73 %</td>
</tr>
<tr>
<td>B</td>
<td>14.28 %</td>
</tr>
<tr>
<td>AB</td>
<td>3.85 %</td>
</tr>
</tbody>
</table>

2. AB-O incompatible pair above should come from tissue incompatibility, not blood-type incompatibility.
However, a situation like the above example is rare, because

1. AB-type is rare (only 3.85 percent in U.S. population),

<table>
<thead>
<tr>
<th>Patient ABO Blood Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48.14 %</td>
</tr>
<tr>
<td>A</td>
<td>33.73 %</td>
</tr>
<tr>
<td>B</td>
<td>14.28 %</td>
</tr>
<tr>
<td>AB</td>
<td>3.85 %</td>
</tr>
</tbody>
</table>

2. AB-O incompatible pair above should come from tissue incompatibility, not blood-type incompatibility.

Given that four-way exchanges are even more difficult than three-way, it may not be the first priority . . .
However, a situation like the above example is rare, because

1. AB-type is rare (only 3.85 percent in U.S. population),

<table>
<thead>
<tr>
<th>Patient ABO Blood Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48.14 %</td>
</tr>
<tr>
<td>A</td>
<td>33.73 %</td>
</tr>
<tr>
<td>B</td>
<td>14.28 %</td>
</tr>
<tr>
<td>AB</td>
<td>3.85 %</td>
</tr>
</tbody>
</table>

2. AB-O incompatible pair above should come from tissue incompatibility, not blood-type incompatibility.

Given that four-way exchanges are even more difficult than three-way, it may not be the first priority . . .

Question: What about 5-way exchanges? What about even larger exchanges?
For theoretical analysis, RSU make a few assumptions.
For theoretical analysis, RSU make a few assumptions.

1. No patient is tissue-type incompatible with another patient’s donor.

2. Patient-donor pairs of types O-A, O-B, O-AB, A-AB, and B-AB are on the “long side” of the exchange in the sense that at least one pair of each type remains unmatched in each feasible set of exchanges.

3. \(\#(A-B) > \#(B-A) \).

4. There is either no type A-A pair or there are at least two of them. The same is also true for each of the types B-B, AB-AB, and O-O.
For theoretical analysis, RSU make a few assumptions.

1. No patient is tissue-type incompatible with another patient’s donor.

2. Patient-donor pairs of types O-A, O-B, O-AB, A-AB, and B-AB are on the “long side” of the exchange in the sense that at least one pair of each type remains unmatched in each feasible set of exchanges.
For theoretical analysis, RSU make a few assumptions.

1. No patient is tissue-type incompatible with another patient’s donor.

2. Patient-donor pairs of types O-A, O-B, O-AB, A-AB, and B-AB are on the “long side” of the exchange in the sense that at least one pair of each type remains unmatched in each feasible set of exchanges.

3. #(A-B) > #(B-A).
For theoretical analysis, RSU make a few assumptions.

1. No patient is tissue-type incompatible with another patient’s donor.

2. Patient-donor pairs of types O-A, O-B, O-AB, A-AB, and B-AB are on the ”long side” of the exchange in the sense that at least one pair of each type remains unmatched in each feasible set of exchanges.

3. #(A-B) > #(B-A).

4. There is either no type A-A pair or there are at least two of them. The same is also true for each of the types B-B, AB-AB, and O-O.
Theorem (RSU 2007)

Consider a patient population for which Assumptions 1, 2, 3 and 4 hold and let μ be any maximal matching (when there is no restriction on the size of the exchanges). Then there exists a maximal matching ν that consists only of two-way, three-way, and four-way exchanges, under which the same set of patients get transplant as in matching μ.
Consider a patient population for which Assumptions 1, 2, 3 and 4 hold and let μ be any maximal matching (when there is no restriction on the size of the exchanges). Then there exists a maximal matching ν that consists only of two-way, three-way, and four-way exchanges, under which the same set of patients get transplant as in matching μ.

The Theorem means that four-way exchanges suffice: all efficient matching can be achieved just using two-way, three-way and four-way exchanges.
A report about a 6-way exchange
(http://www.thebostonchannel.com/health/11320508/detail.html#)
A rare six-way surgical transplant was a success in Boston.
NewsCenter 5’s Heather Unruh reported Wednesday that three people donated their kidneys to three people they did not know. The transplants happened one month ago at Massachusetts General Hospital and Beth Israel Deaconess. The donors and the recipients met Wednesday for the first time.
<table>
<thead>
<tr>
<th>Pop. size</th>
<th>Method</th>
<th>Type of exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Two-way</td>
</tr>
<tr>
<td>Simulation</td>
<td>8.86</td>
<td>11.272</td>
</tr>
<tr>
<td>(3.4866)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 25</td>
<td>Upperbound 1</td>
<td>12.5</td>
</tr>
<tr>
<td>(3.6847)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.8599)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>21.792</td>
<td>27.266</td>
</tr>
<tr>
<td>(5.0063)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 50</td>
<td>Upperbound 1</td>
<td>27.1</td>
</tr>
<tr>
<td>(5.205)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upperbound 2</td>
<td>23.932</td>
<td>29.136</td>
</tr>
<tr>
<td>(5.5093)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>49.708</td>
<td>59.714</td>
</tr>
<tr>
<td>(7.3353)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 100</td>
<td>Upperbound 1</td>
<td>56.816</td>
</tr>
<tr>
<td>(7.2972)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upperbound 2</td>
<td>53.496</td>
<td>61.418</td>
</tr>
<tr>
<td>(7.6214)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Simulation results about average number of patients actually matched and predicted by the formulae to be matched. The standard errors of the population are reported in parentheses. The standard errors of the averages are obtained by dividing population standard errors by square root of the simulation number, 22.36.
Is a maximal matching mechanism incentive compatible?
Incentives

Is a maximal matching mechanism incentive compatible?

Hatfield (2005) shows that the answer is yes: when a kidney exchange mechanism satisfies a property he calls “consistency,” then it is strategy-proof.
Incentives

Is a maximal matching mechanism incentive compatible?

Hatfield (2005) shows that the answer is yes: when a kidney exchange mechanism satisfies a property he calls “consistency,” then it is strategy-proof.

Many mechanisms satisfy consistency, and hence are strategy-proof.
Computational Issues

Is it easy to find a maximal matchings?

Finding a maximal two-way matching is relatively easy. Finding a maximal matching with three-way and up is known to be computationally difficult (NP-complete).

Abraham, Blum, and Sandholm (2007) present an algorithm to find the maximal matchings. According to them, their algorithm is fast enough to use for 10000 pairs or so (remember around 5000 live donations currently).
Computational Issues

Is it easy to find a maximal matchings?

Finding a maximal two-say matching is relatively easy.
Computational Issues

Is it easy to find a maximal matchings?

Finding a maximal two-way matching is relatively easy.

Finding a maximal matching with three way and up is known to be computationally difficult (NP-complete).
Computational Issues

Is it easy to find a maximal matchings?

Finding a maximal two-say matching is relatively easy.

Finding a maximal matching with three way and up is known to be computationally difficult (NP-complete).

Abraham, Blum, and Sandholm (2007) present an algorithm to find the maximal matchings. According to them, their algorithm is fast enough to use for 10000 pairs or so (remember around 5000 live donations currently).

When only two-way exchanges are feasible, it is optimal to conduct all exchanges as soon as they become available.

When there is no limit on size of the exchange, sometimes it is optimal not to conduct all the currently available exchanges and wait until more patients can be matched.
Dynamic Kidney Exchange

So far we have considered a one-shot problem of matching patients and donors, but in reality patients and donors arrive and leave the pool over time.
Dynamic Kidney Exchange

So far we have considered a one-shot problem of matching patients and donors, but in reality patients and donors arrive and leave the pool over time.

Unver considers how the transplantation center should decide who to match, when to match, etc.
Dynamic Kidney Exchange

So far we have considered a one-shot problem of matching patients and donors, but in reality patients and donors arrive and leave the pool over time.

Unver considers how the transplantation center should decide who to match, when to match, etc.

Unver studies how to organize the dynamic kidney exchange mechanism. He shows
Dynamic Kidney Exchange

So far we have considered a one-shot problem of matching patients and donors, but in reality patients and donors arrive and leave the pool over time.

Unver considers how the transplantation center should decide who to match, when to match, etc.

Unver studies how to organize the dynamic kidney exchange mechanism. He shows

1. When only two-way exchanges are feasible, it is optimal to conduct all exchanges as soon as they become available.
Dynamic Kidney Exchange

So far we have considered a one-shot problem of matching patients and donors, but in reality patients and donors arrive and leave the pool over time.

Unver considers how the transplantation center should decide who to match, when to match, etc.

Unver studies how to organize the dynamic kidney exchange mechanism. He shows

1. When only two-way exchanges are feasible, it is optimal to conduct all exchanges as soon as they become available.
2. When there is no limit on size of the exchange, sometimes it is optimal not to conduct all the currently available exchanges and wait until more more patients can be matched.
Simultaneous surgeries constraints may be indispensable for matching incompatible pairs with each other, so two-way exchange may be the only option.
Simultaneous surgeries constraints may be indispensable for matching incompatible pairs with each other, so two-way exchange may be the only option.

But that may not be the case if an exchange is initiated by a good Samaritan donor (non-directed altruistic donor), because even if someone reneges on the plan, no patient ends up getting no kidney while losing her willing donor.
Simultaneous surgeries constraints may be indispensable for matching incompatible pairs with each other, so two-way exchange may be the only option.

But that may not be the case if an exchange is initiated by a good Samaritan donor (non-directed altruistic donor), because even if someone reneges on the plan, no patient ends up getting no kidney while losing her willing donor.

Take a look at the web page of Alliance for Paired Donation at http://www.paireddonation.org/anim2.htm

1. In July 2007, the Alliance for Paired Donation started the first of these chains when an altruistic donor in Michigan donated his kidney to a woman in Phoenix, Arizona.

2. As of the end of September this first NEAD chain was at 4 transplants (M. in MI gave to B. in AZ whose husband R. gave to An. in Toledo, whose mom La. gave to Ce. in Columbus whose daughter Li. gave to G. in Columbus simultaneously with Ce.’s transplant, and now G’s sister Av. is the next bridge donor) . . . (3 bridge donors donated so far)

3. The APD started a second NEAD chain on Dec 7, 2007 with a NDD T who gave to D in Columbus whose daughter M gave to S in Orlando, whose daughter E flew to Toledo to give to R from Tennessee which didn’t work, but she bridged instead to MT in Toledo, whose daughter A will be the next bridge donor (3 transplants so far, 1 from a bridge donor)
More issues

How to incorporate compatible pairs?

Weighting different transplants (how good the match is, transportation cost, etc.)

How to organize a transplantation network when there are many transplant centers?

Stochastic mechanisms and fairness (RSU 2005, Yilmaz 2008).
Summary

In most countries, organ allocation cannot use monetary transfers, resulting in difficulty in efficiently allocating the organs.
Summary

In most countries, organ allocation cannot use monetary transfers, resulting in difficulty in efficiently allocating the organs.

Matching theory can improve efficiency of organ allocation.
Summary

In most countries, organ allocation cannot use monetary transfers, resulting in difficulty in efficiently allocating the organs.

Matching theory can improve efficiency of organ allocation.

Designs involve such issues as efficiency, incentives and fairness.
Summary

In most countries, organ allocation cannot use monetary transfers, resulting in difficulty in efficiently allocating the organs.

Matching theory can improve efficiency of organ allocation.

Designs involve such issues as efficiency, incentives and fairness.

Many theories are motivated by details of the model (dichotomous preferences, logistical constraints, blood types, etc.).
Summary

In most countries, organ allocation cannot use monetary transfers, resulting in difficulty in efficiently allocating the organs.

Matching theory can improve efficiency of organ allocation.

Designs involve such issues as efficiency, incentives and fairness.

Many theories are motivated by details of the model (dichotomous preferences, logistical constraints, blood types, etc.).

A lot of unresolved issues.
Reading for the next topic

We will learn school choice. We will see that a lot of techniques are useful: Both two-sided matching and one-sided matching theories are used for designing school choice. The main paper is

I will also talk about the following papers:

