Chapter 5: School Choice

Fuhito Kojima\(^1\)

February 16, 2009

\(^1\)Yale University. http://sites.google.com/site/fuhitokojimaeconomics/.
In many countries, children were automatically sent to a school in their neighborhoods.
School Choice: Overview

In many countries, children were automatically sent to a school in their neighborhoods.

Recently, more and more cities in the United States and in other countries employ **school choice** programs: school authorities take into account preferences of children and their parents.
In many countries, children were automatically sent to a school in their neighborhoods.

Recently, more and more cities in the United States and in other countries employ school choice programs: school authorities take into account preferences of children and their parents.

Typical goals of school authorities are: (1) efficient placement, (2) fairness of outcomes, (3) easy for participants to understand and use, etc.
Abdulkadiroglu and Sonmez (2003) showed that placement mechanisms used in many cities such as Boston are flawed, and proposed new mechanisms to improve upon existing placement mechanisms.
Abdulkadiroglu and Sonmez (2003) showed that placement mechanisms used in many cities such as Boston are flawed, and proposed new mechanisms to improve upon existing placement mechanisms.

Based on this and other studies, Boston and New York City changed their student placement mechanisms.
Abdulkadiroglu and Sonmez (2003) showed that placement mechanisms used in many cities such as Boston are flawed, and proposed new mechanisms to improve upon existing placement mechanisms.

Based on this and other studies, Boston and New York City changed their student placement mechanisms.

Many studies are currently conducted to evaluate the current school choice mechanisms, and several mechanisms are proposed to improve the outcome.
Finite sets S of students and C of schools.
Model (Abdulkadiroglu and Sonmez 2003, AER)

Finite sets S of students and C of schools.

Each student can be matched to at most one school, and each school can admit at most q_c students.
Model (Abdulkadiroglu and Sonmez 2003, AER)

Finite sets S of students and C of schools.

Each student can be matched to at most one school, and each school can admit at most q_c students.

Each student s has strict preferences \succ_s over schools and being unmatched (denoted by \emptyset).
Finite sets S of students and C of schools.

Each student can be matched to at most one school, and each school can admit at most q_c students.

Each student s has strict preferences \succ_s over schools and being unmatched (denoted by \emptyset).

For each school, there is a (for now, strict) priority order over students. $s \succ_c s'$ means “student s has higher priority for c than s'.”
Finite sets S of students and C of schools.

Each student can be matched to at most one school, and each school can admit at most q_c students.

Each student s has strict preferences \succ_s over schools and being unmatched (denoted by \emptyset).

For each school, there is a (for now, strict) priority order over students. $s \succ_c s'$ means “student s has higher priority for c than s'.”

The outcome is a matching, which specifies which student attends which school.
The model is isomorphic to the many-to-one matching, so we can define stability as before.
Stability

The model is isomorphic to the many-to-one matching, so we can define stability as before.

A matching is **stable** if there is

1. **No blocking individual.** \(\mu(s) \) is acceptable to each student \(s \), each \(s \in \mu(c) \) is acceptable to \(c \) for each school \(c \), and \(|\mu(c)| \leq q_c \).
2. **No blocking pair.** There is no pair \(s \) and \(c \) such that \(c \succ_s \mu(s) \) and \(|\mu(c)| < q_c \) and \(s \succ_c \emptyset \), or \(s \succ_c s' \) for some \(s' \in \mu(c) \).
Stability as Fairness Criterion

In school choice, stability can be understood as a fairness criterion.
In school choice, stability can be understood as a fairness criterion.

No blocking individual simply means no one is forced to attend an unacceptable school, and only qualified students can be admitted to a school (in some districts, all students are acceptable. Such cases are special cases.)
Stability as Fairness Criterion

In school choice, stability can be understood as a fairness criterion.

No blocking individual simply means no one is forced to attend an unacceptable school, and only qualified students can be admitted to a school (in some districts, all students are acceptable. Such cases are special cases.)

No blocking pair means no justified envy. That is, there is no situation in which student s is matched to a worse school than school c, and c admits another student who has lower priority at c than s does.
Stability as Fairness Criterion

In school choice, stability can be understood as a fairness criterion.

No blocking individual simply means no one is forced to attend an unacceptable school, and only qualified students can be admitted to a school (in some districts, all students are acceptable. Such cases are special cases.)

No blocking pair means no justified envy. That is, there is no situation in which student s is matched to a worse school than school c, and c admits another student who has lower priority at c than s does.

So stability may be a reasonable property we want for school choice mechanisms.
The **Boston mechanism:**

1. **Step 0:** Each student submits a preference ranking of the schools.
2. **Step 1:** In Step 1 only the top choices of the students are considered. For each school, consider the students who have listed it as their top choice and assign seats of the school to these students one at a time following their priority order until there are no seats left or there is no student left who has listed it as her top choice.
3. **Step k:** Consider the remaining students. In Step k only the kth choices of these students are considered. For each school still with available seats, consider the students who have listed it as their kth choice and assign the remaining seats to these students one at a time following their priority order until there are no seats left or there is no student left who has listed it as her kth choice.
The **Boston mechanism:**

- **Step 0:** Each student submits a preference ranking of the schools.
The **Boston mechanism:**

- **Step 0:** Each student submits a preference ranking of the schools.
- **Step 1:** In Step 1 only the top choices of the students are considered. For each school, consider the students who have listed it as their top choice and assign seats of the school to these students one at a time following their priority order until either there are no seats left or there is no student left who has listed it as her top choice.
The **Boston mechanism**:

- **Step 0**: Each student submits a preference ranking of the schools.
- **Step 1**: In Step 1 only the top choices of the students are considered. For each school, consider the students who have listed it as their top choice and assign seats of the school to these students one at a time following their priority order until either there are no seats left or there is no student left who has listed it as her top choice.
- **Step k**: Consider the remaining students. In Step k only the \(k^{th} \) choices of these students are considered. For each school still with available seats, consider the students who have listed it as their \(k^{th} \) choice and assign the remaining seats to these students one at a time following their priority order until either there are no seats left or there is no student left who has listed it as her \(k^{th} \) choice.
Boston mechanism has lots of problematic features:
Boston mechanism has lots of problematic features:

1. It is not strategy-proof.
Boston mechanism has lots of problematic features:

1. It is not strategy-proof.

2. Moreover, it is easy to manipulate it. Even if a student has a very high priority at a school, unless she lists it as her top choice she loses her priority to students who have top ranked that school.
Worries in Boston mechanism are real

St. Petersburg Times (09/14/2003):
Make a realistic, informed selection on the school you list as your first choice. It's the cleanest shot you will get at a school, but if you aim too high you might miss. Here's why: If the random computer selection rejects your first choice, your chances of getting your second choice school are greatly diminished. That's because you then fall in line behind everyone who wanted your second choice school as their first choice. You can fall even farther back in line as you get bumped down to your third, fourth and fifth choices.

The 2004-2005 BPS School Guide:
"For a better choice of your 'first choice' school... consider choosing less popular schools."
Worries in Boston mechanism are real

St. Petersburg Times (09/14/2003):

Make a realistic, informed selection on the school you list as your first choice. It’s the cleanest shot you will get at a school, but if you aim too high you might miss. Here’s why: If the random computer selection rejects your first choice, your chances of getting your second choice school are greatly diminished. That’s because you then fall in line behind everyone who wanted your second choice school as their first choice. You can fall even farther back in line as you get bumped down to your third, fourth and fifth choices.
Worries in Boston mechanism are real

St. Petersburg Times (09/14/2003):

Make a realistic, informed selection on the school you list as your first choice. It’s the cleanest shot you will get at a school, but if you aim too high you might miss. Here’s why: If the random computer selection rejects your first choice, your chances of getting your second choice school are greatly diminished. That’s because you then fall in line behind everyone who wanted your second choice school as their first choice. You can fall even farther back in line as you get bumped down to your third, fourth and fifth choices.

The 2004-2005 BPS School Guide:

"For a better choice of your ‘first choice’ school... consider choosing less popular schools."
The Boston mechanism is unfair, i.e., does not eliminate justified envy, either. Priorities are lost unless the school is ranked as the top choice.
The Boston mechanism is unfair, i.e., does not eliminate justified envy, either. Priorities are lost unless the school is ranked as the top choice.

Theorem (Ergin and Sönmez 2006; extended by Kojima 2008)

The set of Nash equilibrium outcomes under the Boston mechanism is equal to the set of stable matchings.
The Boston mechanism is unfair, i.e., does not eliminate justified envy, either. Priorities are lost unless the school is ranked as the top choice.

Theorem (Ergin and Sönmez 2006; extended by Kojima 2008)

The set of Nash equilibrium outcomes under the Boston mechanism is equal to the set of stable matchings.

But the preference revelation game induced by the Boston mechanism is a "coordination game" among large numbers of parents in which there is incomplete information. So it may be unrealistic to expect to reach a Nash equilibrium in practice.
Moreover, the Boston mechanism may produce an inefficient matching given students may behave strategically.
Moreover, the Boston mechanism may produce an inefficient matching given students may behave strategically.

In Boston many students end up unassigned, suggesting inefficiency (we’ll see statistics later).
Moreover, the Boston mechanism may produce an inefficient matching given students may behave strategically.

In Boston many students end up unassigned, suggesting inefficiency (we’ll see statistics later).

Given deficiency of the popular Boston mechanism, what mechanism should we use instead?
Student-Proposing DA in School Choice

We can use the student-proposing DA (Gale and Shapley 1962; Abdulkadiroglu and Sonmez 2003).
We can use the student-proposing DA (Gale and Shapley 1962; Abdulkadiroglu and Sonmez 2003).

Step 1: (a) Each student “applies” to her first choice school.
(b) Each school tentatively holds the applicants with highest priority up to its quota (if s/he is acceptable) and rejects all other students.

Step $t \geq 2$: (a) Each student rejected in Step $(t - 1)$ applies to her next highest choice.
(b) Each school considers both new applicants and the student (if any) held at Step $(t-1)$, tentatively holds the applicants with highest priority up to its quota from the combined set of students, and rejects all other students.

Terminate when no more applications are made. Termination happens in finite time.
Difference of school choice from two-sided matching

Schools are merely goods to be consumed, rather than players. If this is true, then we should take into account welfare of students only.
Difference of school choice from two-sided matching

Schools are merely goods to be consumed, rather than players. If this is true, then we should take into account welfare of students only.

Students’ priorities at schools are often decided by law. In such a case, schools do not behave strategically.
Schools are merely goods to be consumed, rather than players. If this is true, then we should take into account welfare of students only.

Students’ priorities at schools are often decided by law. In such a case, schools do not behave strategically.

Given these differences, we can see some old results in new lights.
Theorem (Gale and Shapley 1962; RS Theorem 2.12)
There exists a student-optimal stable matching, that is, a stable matching that every student weakly prefers to any stable matching. The result of the student-proposing DA algorithm is the student-optimal stable matching.
Student-optimal stable matchings

Theorem (Gale and Shapley 1962; RS Theorem 2.12)

There exists a student-optimal stable matching, that is, a stable matching that every student weakly prefers to any stable matching. The result of the student-proposing DA algorithm is the student-optimal stable matching.

Because we consider welfare of students only, this theorem means that welfare is maximized by the student-proposing DA, subject to stability.
Student-optimal stable matchings

Theorem (Gale and Shapley 1962; RS Theorem 2.12)

There exists a student-optimal stable matching, that is, a stable matching that every student weakly prefers to any stable matching. The result of the student-proposing DA algorithm is the student-optimal stable matching.

Because we consider welfare of students only, this theorem means that welfare is maximized by the student-proposing DA, subject to stability.

We also learned the student-optimal stable matching is the unanimously worst stable matching for schools, but it is not costly any more (because we do not care about school’s “welfare”).
DA is strategy-proof in school choice problems

Theorem (Dubins and Freedman 1981, Roth 1982; extended by Hatfield and Kojima forthcoming)

The student-proposing DA is (group) strategy-proof. That is, telling the truth is a dominant strategy for every student (and even a joint deviation by a group of students cannot make everyone better off).
DA is strategy-proof in school choice problems

Theorem (Dubins and Freedman 1981, Roth 1982; extended by Hatfield and Kojima forthcoming)

The student-proposing DA is (group) strategy-proof. That is, telling the truth is a dominant strategy for every student (and even a joint deviation by a group of students cannot make everyone better off).

So, in school choice problems, there exists a strategy-proof and stable mechanism. Roth's impossibility theorem said there is no such thing when both students and schools can behave strategically.
DA is strategy-proof in school choice problems

Theorem (Dubins and Freedman 1981, Roth 1982; extended by Hatfield and Kojima forthcoming)

The student-proposing DA is (group) strategy-proof. That is, telling the truth is a dominant strategy for every student (and even a joint deviation by a group of students cannot make everyone better off).

So, in school choice problems, there exists a strategy-proof and stable mechanism. Roth’s impossibility theorem said there is no such thing when both students and schools can behave strategically.

In fact, DA is the only strategy-proof and stable mechanism.
Other good properties of DA

Other good properties are known for DA.
Other good properties are known for DA.

1. DA is the only stable mechanism that respects improvements, that is, a higher priority is always good for a student (Balinski and Sonmez 1999).
Other good properties of DA

Other good properties are known for DA.

1. DA is the only stable mechanism that respects improvements, that is, a higher priority is always good for a student (Balinski and Sonmez 1999).

2. DA is weakly Pareto optimal, that is, there is no other individually rational matching that every student strictly prefers to DA (Roth 1982; extended by Kojima 2008 and Hatfield and Kojima forthcoming GEB).
Other good properties of DA

Other good properties are known for DA.

1. DA is the only stable mechanism that respects improvements, that is, a higher priority is always good for a student (Balinski and Sonmez 1999).

2. DA is weakly Pareto optimal, that is, there is no other individually rational matching that every student strictly prefers to DA (Roth 1982; extended by Kojima 2008 and Hatfield and Kojima forthcoming GEB).

So the student-proposing DA is the big winner among all stable mechanisms.
Other good properties of DA

Other good properties are known for DA.

1. DA is the only stable mechanism that respects improvements, that is, a higher priority is always good for a student (Balinski and Sonmez 1999).

2. DA is weakly Pareto optimal, that is, there is no other individually rational matching that every student strictly prefers to DA (Roth 1982; extended by Kojima 2008 and Hatfield and Kojima forthcoming GEB).

So the student-proposing DA is the big winner among all stable mechanisms.

Balinski and Sonmez (1999) shows that the mechanism used for college admission in Turkey is equivalent to the school-proposing DA, and advocated the change of the mechanism to the student-proposing DA.
Efficiency cost of stability

Let $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

\[
\succ_i : b, a, \\
\succ_j : a, \\
\succ_k : a, b,
\]

and both schools have one position and priorities are

\[
\succ_a : i, j, k, \\
\succ_b : k, i.
\]
Efficiency cost of stability

Let $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

\[

\succ_i : b, a,
\succ_j : a,
\succ_k : a, b,

\]

and both schools have one position and priorities are

\[

\succ_a : i, j, k,
\succ_b : k, i.

\]

DA results in

\[

\mu = \{(i, a), (j, \emptyset), (k, b)\},

\]
Efficiency cost of stability

Let $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

\begin{align*}
\succ_i &: b, a, \\
\succ_j &: a, \\
\succ_k &: a, b,
\end{align*}

and both schools have one position and priorities are

\begin{align*}
\succ_a &: i, j, k, \\
\succ_b &: k, i.
\end{align*}

DA results in

$$\mu = \{(i, a), (j, \emptyset), (k, b)\},$$

which is less preferred by every student to

$$\mu' = \{(i, b), (j, \emptyset), (k, a)\},$$
Efficiency cost of stability

Let $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

\[\succ_i : b, a, \]
\[\succ_j : a, \]
\[\succ_k : a, b, \]

and both schools have one position and priorities are

\[\succ_a : i, j, k, \]
\[\succ_b : k, i. \]

DA results in

\[\mu = \{(i, a), (j, \emptyset), (k, b)\}, \]

which is less preferred by every student to

\[\mu' = \{(i, b), (j, \emptyset), (k, a)\}, \]

so DA is Pareto inefficient.
For school choice, the student-proposing DA may not produce a Pareto efficient matching.
For school choice, the student-proposing DA may not produce a Pareto efficient matching.

Since the student-proposing DA is Pareto dominant among stable matchings, no stable matching is Pareto efficient in the last example.
For school choice, the student-proposing DA may not produce a Pareto efficient matching.

Since the student-proposing DA is Pareto dominant among stable matchings, no stable matching is Pareto efficient in the last example.

Also, in school choice stability may be desirable but may not be indispensable: It depends on school districts, presumably (compare it to labor markets, in which stability seems necessary just to sustain an orderly assignment).
For school choice, the student-proposing DA may not produce a Pareto efficient matching.

Since the student-proposing DA is Pareto dominant among stable matchings, no stable matching is Pareto efficient in the last example.

Also, in school choice stability may be desirable but may not be indispensable: It depends on school districts, presumably (compare it to labor markets, in which stability seems necessary just to sustain an orderly assignment).

If the school districts can tolerate somewhat unfair matchings, how can we design a more efficient mechanism?
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):

1. **Assign a counter** for each school that keeps track of how many seats are still available at the school. Initially set the counters equal to the capacities of the schools.
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):

1. Assign a **counter** for each school that keeps track of how many seats are still available at the school. Initially set the counters equal to the capacities of the schools.
2. Each student "points to" her favorite school. Each school points to the student who has the top priority.
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):

1. Assign a **counter** for each school that keeps track of how many seats are still available at the school. Initially set the counters equal to the capacities of the schools.
2. Each student ”points to” her favorite school. Each school points to the student who has the top priority.
3. There is at least one cycle (why?). Every student in a cycle is assigned a seat at the school she points to and is removed. The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is also removed. Counters of all other schools are unchanged.
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):

1. Assign a **counter** for each school that keeps track of how many seats are still available at the school. Initially set the counters equal to the capacities of the schools.

2. Each student ”points to” her favorite school. Each school points to the student who has the top priority.

3. There is at least one cycle (why?). Every student in a cycle is assigned a seat at the school she points to and is removed. The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is also removed. Counters of all other schools are unchanged.

4. Repeat above steps for the remaining school seats and students.
The **TTC algorithm** (Abdulkadiroglu and Sonmez 2003):

1. Assign a **counter** for each school that keeps track of how many seats are still available at the school. Initially set the counters equal to the capacities of the schools.
2. Each student "points to" her favorite school. Each school points to the student who has the top priority.
3. There is at least one cycle (why?). Every student in a cycle is assigned a seat at the school she points to and is removed. The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is also removed. Counters of all other schools are unchanged.
4. Repeat above steps for the remaining school seats and students.

TTC allows students to trade priorities, starting with the students with highest priorities.
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.

The TTC for school choice is a common generalization of
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.

The TTC for school choice is a common generalization of

1. Serial Dictatorship in the house allocation problem,
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.

The TTC for school choice is a common generalization of
1. Serial Dictatorship in the house allocation problem,
2. Gale’s TTC in the housing market,
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.

The TTC for school choice is a common generalization of

1. Serial Dictatorship in the house allocation problem,
2. Gale's TTC in the housing market,
3. YRMH-IGYT (TTC) in house allocation with existing tenants,
Theorem (Abdulkadiroğlu and Sönmez 2003)

The TTC mechanism is Pareto-efficient and strategy-proof.

The TTC for school choice is a common generalization of

1. Serial Dictatorship in the house allocation problem,
2. Gale’s TTC in the housing market,
3. YRMH-IGYT (TTC) in house allocation with existing tenants,

and the school choice TTC inherits good properties from these, as shown by the Theorem.
Example of TTC

The same example as before. $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

$\succ_i : b, a,$
$\succ_j : a,$
$\succ_k : a, b,$

and both schools have one position and priorities are

$\succ_a : i, j, k,$
$\succ_b : k, i.$
Example of TTC

The same example as before. $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

- $\succ_i : b, a,$
- $\succ_j : a,$
- $\succ_k : a, b,$

and both schools have one position and priorities are

- $\succ_a : i, j, k,$
- $\succ_b : k, i.$

TTC results in

\[
\mu' = \{(i, b), (j, \emptyset), (k, a)\},
\]

a Pareto efficient matching.

Compare this with the result of DA,

\[
\mu = \{(i, a), (j, \emptyset), (k, b)\},
\]

which is not Pareto efficient.
Example of TTC

The same example as before. $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

$\succ_i: b, a,$
$\succ_j: a,$
$\succ_k: a, b,$

and both schools have one position and priorities are

$\succ_a: i, j, k,$
$\succ_b: k, i.$

TTC results in

$\mu' = \{(i, b), (j, \emptyset), (k, a)\},$

a Pareto efficient matching.
Example of TTC

The same example as before. $S = \{i, j, k\}$, $C = \{a, b\}$, and student preferences are

\[\succ_i : b, a, \]
\[\succ_j : a, \]
\[\succ_k : a, b, \]

and both schools have one position and priorities are

\[\succ_a : i, j, k, \]
\[\succ_b : k, i. \]

TTC results in

\[\mu' = \{(i, b), (j, \emptyset), (k, a)\}, \]

a Pareto efficient matching.

Compare this with the result of DA,

\[\mu = \{(i, a), (j, \emptyset), (k, b)\} \]

which is not Pareto efficient.
So far, Boston and New York City have explicitly worked with economists and designed their school choice mechanisms.
Boston School Match (Abdulkadiroglu, Pathak, Roth and Sonmez 2005, 2008)

Students entering grades K, 6, and 9 submit preferences over schools.
Boston School Match (Abdulkadiroglu, Pathak, Roth and Sonmez 2005, 2008)

Students entering grades K, 6, and 9 submit preferences over schools.

Students have priorities at schools set by the school system:
1. Students who already attend the school,
2. Students who live in a walk zone and have their siblings already attending the school,
3. Students whose siblings are already attending the school,
4. Students who live in a walk zone,
5. All other students.
Students entering grades K, 6, and 9 submit preferences over schools.

Students have priorities at schools set by the school system:

1. Students who already attend the school,
2. Students who live in a walk zone and have their siblings already attending the school,
3. Students whose siblings are already attending the school,
4. Students who live in a walk zone,
5. All other students.

Priorities are weak, i.e., there are many students in each priority class: This is going to be important (later topic) but for now let’s ignore the issue.
Remember the problem with the old Boston mechanism: It is very easy to manipulate!
Remember the problem with the old Boston mechanism: It is very easy to manipulate!

Especially, reported first choices are important: if you don’t receive your first choice, you might drop far down list.
Remember the problem with the old Boston mechanism: It is very easy to manipulate!

Especially, reported first choices are important: if you don’t receive your first choice, you might drop far down list.

Indeed, there seem to be gaming of preferences: the vast majority are assigned to their stated “first choices.”
Remember the problem with the old Boston mechanism: It is very easy to manipulate!

Especially, reported first choices are important: if you don’t receive your first choice, you might drop far down list.

Indeed, there seem to be gaming of preferences: the vast majority are assigned to their stated “first choices.”

Chen and Sonmez (2005): experimental evidence on preference manipulation under Boston mechanism.
Advice from the West Zone Parent’s Group meeting, 10/27/03

One school choice strategy is to find a school you like that is undersubscribed and put it as a top choice, OR, find a school that you like that is popular and put it as a first choice and find a school that is less popular for a “safe” second choice.
Of the 15,135 students on whom Abdulkadiroglu et al. analyzed, 19% (2910) listed two overdemanded schools as their top two choices, and about 27% (782) of these ended up unassigned.
Of the 15,135 students on whom Abdulkadiroglu et al. analyzed, 19% (2910) listed two overdemanded schools as their top two choices, and about 27% (782) of these ended up unassigned.

Such behavior is clearly a bad choice, and people suffer from not being sophisticated enough to game the system (Abdulkadiroglu et al. advocate the idea that strategy-proofness is a certain fairness criterion).
Since priorities are set by law for Boston schools, Abdulkadiroglu et al. recommended not only DA but also TTC: remember TTC is more efficient than DA.
Since priorities are set by law for Boston schools, Abdulkadiroglu et al. recommended not only DA but also TTC: remember TTC is more efficient than DA.

However the school system finally chose DA: the story says the idea of “trading priorities” in TTC did not appeal to policy makers.
Since priorities are set by law for Boston schools, Abdulkadiroglu et al. recommended not only DA but also TTC: remember TTC is more efficient than DA.

However the school system finally chose DA: the story says the idea of “trading priorities” in TTC did not appeal to policy makers.

DA was implemented in Boston in 2006 and is in use.

Over 90,000 students enter high schools each year.

Over 90,000 students enter high schools each year.

The old NYC system was decentralized:

1. Each student can submit a list of at most 5 schools.
2. Each school obtains the list of students who listed it, and independently make offers.
3. There were waiting lists (run by mail), and 3 rounds of move waiting lists.

Over 90,000 students enter high schools each year.

The old NYC system was decentralized:

1. Each student can submit a list of at most 5 schools.
2. Each school obtains the list of students who listed it, and independently make offers.
3. There were waiting lists (run by mail), and 3 rounds of move waiting lists.

Problems with the old system:

1. The system left 30,000 children unassigned to any of their choices and they are administratively assigned.
2. Strategic behavior by schools: school principals were concealing capacities (Sonmez 1997; further studies by Konishi and Unver 2006; Kojima 2008).
In New York City, schools behave strategically.
In New York City, schools behave strategically.

Deputy Chancellor of Schools (NYT 11/19/04):

Before you might have had a situation where a school was going to take 100 new children for 9th grade, they might have declared only 40 seats and then placed the other 60 children outside the process.
In New York City, schools behave strategically.

Deputy Chancellor of Schools (NYT 11/19/04):

Before you might have had a situation where a school was going to take 100 new children for 9th grade, they might have declared only 40 seats and then placed the other 60 children outside the process.

So, unlike Boston, the market seems to be really two-sided, i.e., we should treat both students and schools as strategic players.
Since NYC is a two-sided matching market, the student-proposing DA is the big winner! Remember DA has a lot of good properties:
Since NYC is a two-sided matching market, the student-proposing DA is the big winner! Remember DA has a lot of good properties:

1. The student-proposing DA implements a stable matching (probably more important for NYC than for Boston.)
Since NYC is a two-sided matching market, the student-proposing DA is the big winner! Remember DA has a lot of good properties:

1. The student-proposing DA implements a stable matching (probably more important for NYC than for Boston.)
2. The student-proposing DA is strategy-proof for students: it is a dominant strategy for every student to report true preferences (Dubins and Freedman 1981; Roth 1982; generalized by Hatfield and Milgrom 2005 and Hatfield and Kojima forthcoming GEB).

3. There is no stable mechanism that is strategy-proof for schools (Roth 1982)
4. When the market is large, it is almost strategy-proof for schools to report true preferences (Roth and Peranson 1999; Kojima and Pathak 2008). Recall there are 90,000 students and over 500 public high schools in New York City.
Since NYC is a two-sided matching market, the student-proposing DA is the big winner! Remember DA has a lot of good properties:

1. The student-proposing DA implements a stable matching (probably more important for NYC than for Boston.)

2. The student-proposing DA is strategy-proof for students: it is a dominant strategy for every student to report true preferences (Dubins and Freedman 1981; Roth 1982; generalized by Hatfield and Milgrom 2005 and Hatfield and Kojima forthcoming GEB).

3. There is no stable mechanism that is strategy-proof for schools (Roth 1982)
Since NYC is a two-sided matching market, the student-proposing DA is the big winner! Remember DA has a lot of good properties:

1. The student-proposing DA implements a stable matching (probably more important for NYC than for Boston.)

2. The student-proposing DA is strategy-proof for students: it is a dominant strategy for every student to report true preferences (Dubins and Freedman 1981; Roth 1982; generalized by Hatfield and Milgrom 2005 and Hatfield and Kojima forthcoming GEB).

3. There is no stable mechanism that is strategy-proof for schools (Roth 1982)

4. When the market is large, it is almost strategy-proof for schools to report true preferences (Roth and Peranson 1999; Kojima and Pathak 2008). Recall there are 90,000 students and over 500 public high schools in New York City.
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
3. Some top students are granted to get into a school when they rank the school as their first choices.
4. All unmatched students in the main round will be assigned in the supplementary round, where the random serial dictatorship is used.

These features come from historical constraints and could not be changed. This makes it technically incorrect to use standard results in two-sided matching, but they seem to be small enough a problem (it may be interesting to study if this is true and why or why not.)
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
3. Some top students are granted to get into a school when they rank the school as their first choices.
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
3. Some top students are granted to get into a school when they rank the school as their first choices.
4. All unmatched students in the main round will be assigned in the supplementary round, where the random serial dictatorship is used.

These features come from historical constraints and could not be changed. This makes it technically incorrect to use standard results in two-sided matching, but they seem to be small enough a problem (it may be interesting to study if this is true and why or why not.)
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
3. Some top students are granted to get into a school when they rank the school as their first choices.
4. All unmatched students in the main round will be assigned in the supplementary round, where the random serial dictatorship is used.

These features come from historical constraints and could not be changed.
Abdulkadiroglu et al. and NYC Department of Education changed the mechanism to the student-proposing DA, except for some details:

1. Students can rank only 12 schools.
2. Seats in a few schools, called specialized high schools (such as Stuyvesant and Bronx High School of Science), is assigned in an earlier round, separately from the rest.
3. Some top students are granted to get into a school when they rank the school as their first choices.
4. All unmatched students in the main round will be assigned in the supplementary round, where the random serial dictatorship is used.

These features come from historical constraints and could not be changed.

This make it technically incorrect to use standard results in two-sided matching, but they seem to be small enough a problem (it may be interesting to study if this is true and why or why not.)
Over 70,000 students were matched to one of their choice schools: an increase of more than 20,000 students compared to the previous year match.
Effect of changes in the mechanism

Over 70,000 students were matched to one of their choice schools: an increase of more than 20,000 students compared to the previous year match.

An additional 7,600 students matched to a school of their choice in the third round.
Effect of changes in the mechanism

Over 70,000 students were matched to one of their choice schools: an increase of more than 20,000 students compared to the previous year match.

An additional 7,600 students matched to a school of their choice in the third round.

3,000 students did not receive any school they chose, a decrease from 30,000 who did not receive a choice school in the previous year.
Theory: What is the efficiency cost of DA?

Theory: What is the efficiency cost of DA?

In school choice, school districts can choose what their mechanism is as well as the priority structure (at least to some extent).
Theory: What is the efficiency cost of DA?

In school choice, school districts can choose what their mechanism is as well as the priority structure (at least to some extent).

Then, stability is desirable only to the extent that priorities convey societal preferences. On the other hand, stable mechanisms typically results in inefficient matchings (remember TTC versus DA).
Theory: What is the efficiency cost of DA?

In school choice, school districts can choose what their mechanism is as well as the priority structure (at least to some extent).

Then, stability is desirable only to the extent that priorities convey societal preferences. On the other hand, stable mechanisms typically results in inefficient matchings (remember TTC versus DA).

So, what is the efficiency cost of stable mechanisms? We use an axiomatic approach to investigate this question.
As we have seen, the DA is not fully Pareto efficient.
As we have seen, the DA is not fully Pareto efficient.

On the other hand, DA at least satisfies a minimal efficiency criterion, **non-wastefulness**: A student cannot get into a school only if all the seats at that school are allocated to other agents.
As we have seen, the DA is not fully Pareto efficient.

On the other hand, DA at least satisfies a minimal efficiency criterion, non-wastefulness: A student cannot get into a school only if all the seats at that school are allocated to other agents.

Non-wastefulness is a minimal efficiency requirement, and is satisfied by most reasonable mechanisms.
Main Axiom-Competitive Claim Monotonicity

The new axiom: competitive claim monotonicity.
Main Axiom-Competitive Claim Monotonicity

The new axiom: **competitive claim monotonicity**.

Consider two scenarios:

Fuhito Kojima
Chapter 5: School Choice
Main Axiom-Competitive Claim Monotonicity

The new axiom: **competitive claim monotonicity**.

Consider two scenarios:

1. A student report her preferences on schools a, b, and receives her second choice b.

 - We say that a mechanism satisfies competitive claim monotonicity if everyone is made weakly better off in the second scenario. That is, competitive claim monotonicity requires that less competition in claiming rights for schools benefits all agents. Another way to understand this axiom: when a student applies (place claims) to schools for which she has no chance, doing so may not hurt herself but hurt others, and cause inefficiency.
Main Axiom-Competitive Claim Monotonicity

The new axiom: **competitive claim monotonicity**.

Consider two scenarios:

1. A student report her preferences on schools a, b, and receives her second choice b.
2. Now, realizing that she will not get the favorite school a anyway, she drops her claim on favorite school a, that is, apply only to b.

We say that a mechanism satisfies **competitive claim monotonicity** if everyone is made weakly better off in the second scenario. That is, competitive claim monotonicity requires that less competition in claiming rights for schools benefits all agents. Another way to understand this axiom: when a student applies (place claims) to schools for which she has no chance, doing so may not hurt herself but hurt others, and cause inefficiency.
Main Axiom-Competitive Claim Monotonicity

The new axiom: **competitive claim monotonicity**.

Consider two scenarios:

1. A student reports her preferences on schools a, b, and receives her second choice b.
2. Now, realizing that she will not get the favorite school a anyway, she drops her claim on favorite school a, that is, apply only to b.

We say that a mechanism satisfies **competitive claim monotonicity** if everyone is made weakly better off in the second scenario.
Main Axiom—Competitive Claim Monotonicity

The new axiom: *competitive claim monotonicity*.

Consider two scenarios:

1. A student reports her preferences on schools a, b, and receives her second choice b.
2. Now, realizing that she will not get the favorite school a anyway, she drops her claim on favorite school a, that is, apply only to b.

We say that a mechanism satisfies *competitive claim monotonicity* if everyone is made weakly better off in the second scenario. That is, competitive claim monotonicity requires that less competition in claiming rights for schools benefits all agents.
Main Axiom-Competitive Claim Monotonicity

The new axiom: **competitive claim monotonicity**.

Consider two scenarios:

1. A student report her preferences on schools a, b, and receives her second choice b.
2. Now, realizing that she will not get the favorite school a anyway, she drops her claim on favorite school a, that is, apply only to b.

We say that a mechanism satisfies **competitive claim monotonicity** if everyone is made weakly better off in the second scenario. That is, competitive claim monotonicity requires that less competition in claiming rights for schools benefits all agents.

Another way to understand this axiom: when a student applies (place claims) to schools for which she has no chance, doing so may not hurt herself but **hurt others**, and cause inefficiency.
Example: DA satisfies competitive claim monotonicity

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

$\succ_i : b, a,$

$\succ_j : a,$

$\succ_k : a, b,$

$\succ_a : i, j, k,$

$\succ_b : k, i.$

DA results in $\mu = \{(i, a), (j, \emptyset), (k, b)\}.$

If j declares that no school is acceptable (places less competitive claims), then DA results in $\mu' = \{(i, b), (j, \emptyset), (k, a)\},$ Better for everyone!
Example: DA satisfies competitive claim monotonicity

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

- $\succ_i : b, a$,
- $\succ_j : a$,
- $\succ_k : a, b$,
- $\succ_a : i, j, k$,
- $\succ_b : k, i$.

DA results in

$$\mu = \{(i, a), (j, \emptyset), (k, b)\}.$$
Example: DA satisfies competitive claim monotonicity

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

$\succ_i : b, a,$
$\succ_j : a,$
$\succ_k : a, b,$
$\succ_a : i, j, k,$
$\succ_b : k, i.$

DA results in

$\mu = \{(i, a), (j, \emptyset), (k, b)\}.$

If j declares that no school is acceptable (places less competitive claims), then DA results in

$\mu' = \{(i, b), (j, \emptyset), (k, a)\}.$

Better for everyone!
Example: DA satisfies competitive claim monotonicity

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

$\succ_i : b, a,$

$\succ_j : a,$

$\succ_k : a, b,$

$\succ_a : i, j, k,$

$\succ_b : k, i.$

DA results in

$$\mu = \{(i, a), (j, \emptyset), (k, b)\}.$$

If j declares that no school is acceptable (places less competitive claims), then DA results in

$$\mu' = \{(i, b), (j, \emptyset), (k, a)\},$$

Better for everyone!
More generally, DA turns out to satisfy competitive claim monotonicity.
More generally, DA turns out to satisfy competitive claim monotonicity.

Intuition: when a student applies to a no chance school, that still may cause an additional “rejection chain” — a chain reaction of application and rejections by a displaced students and schools getting additional applications — so more students are rejected, being forced to apply to less preferred schools.
Characterization Result

The surprising thing is that non-wastefulness and competitive claim monotonicity capture all the content of DA. That is,
The surprising thing is that non-wastefulness and competitive claim monotonicity capture all the content of DA. That is,

Theorem

An allocation rule \(\varphi \) satisfies non-wastefulness and competitive claim monotonicity if and only if there exists a priority structure such that \(\varphi \) is equivalent to a DA with respect to that priority structure.
Characterization Result

The surprising thing is that non-wastefulness and competitive claim monotonicity capture all the content of DA. That is,

Theorem

An allocation rule φ satisfies non-wastefulness and competitive claim monotonicity if and only if there exists a priority structure such that φ is equivalent to a DA with respect to that priority structure.

So, the decision of school districts to use DA is essentially to allow for efficiency cost because of competitive claim monotonicity, and nothing more.
We also consider situations where the priority structure is a primitive, that is, stability with respect to the priority structure is imposed exogenously.
We also consider situations where the priority structure is a primitive, that is, stability with respect to the priority structure is imposed exogenously.

Theorem

Let there be an exogenously given priority structure, and \(\phi \) be a stable mechanism. \(\phi \) is DA for that priority structure if and only if it satisfies competitive claim monotonicity.
We also consider situations where the priority structure is a primitive, that is, stability with respect to the priority structure is imposed exogenously.

Theorem

Let there be an exogenously given priority structure, and \(\varphi \) be a stable mechanism. \(\varphi \) is DA for that priority structure if and only if it satisfies competitive claim monotonicity.

So, among stable mechanisms, using DA is the same thing as imposing competitive claim monotonicity.
Based on Ergin (2002).
Based on Ergin (2002).

Another question to ask is, when is DA costly in school choice? What priority structure ensures efficiency of DA?
Based on Ergin (2002).

Another question to ask is, when is DA costly in school choice? What priority structure ensures efficiency of DA?

To investigate this issue, it is useful to see (now familiar) example where DA is inefficient.
Example: DA causes inefficiency

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

\[\succ_i : b, a,\]
\[\succ_j : a,\]
\[\succ_k : a, b,\]
\[\succ_a : i, j, k,\]
\[\succ_b : k, i.\]
Example: DA causes inefficiency

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

$\succ_i : b, a,$
$\succ_j : a,$
$\succ_k : a, b,$
$\succ_a : i, j, k,$
$\succ_b : k, i.$

DA results in

$\mu = \{(i, a), (j, \emptyset), (k, b)\},$
Example: DA causes inefficiency

Let $S = \{i, j, k\}$, $C = \{a, b\}$, each school has one position and

\[\succ i : b, a, \]
\[\succ j : a, \]
\[\succ k : a, b, \]
\[\succ a : i, j, k, \]
\[\succ b : k, i. \]

DA results in

\[\mu = \{(i, a), (j, \emptyset), (k, b)\}, \]

while

\[\mu' = \{(i, b), (j, \emptyset), (k, a)\}, \]

is better for everyone!
There is a chain of applications and rejections in the above example, as we have seen before.
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[\succ_a : i, j, k \]
\[\succ_b : k, i. \]
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[\succ_a : i, j, k \]
\[\succ_b : k, i. \]

Because of such a cycle, in DA,
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

$$\succ_a : i, j, k$$
$$\succ_b : k, i.$$

Because of such a cycle, in DA,

1. k applies to her favorite a but j displaces k,
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[
\succ_a : i, j, k \\
\succ_b : k, i.
\]

Because of such a cycle, in DA,

1. \(k \) applies to her favorite \(a \) but \(j \) displaces \(k \),
2. \(k \) is forced to apply to her second choice \(b \), displacing \(i \) from his favorite \(b \),
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[\succ_a : i, j, k \]
\[\succ_b : k, i. \]

Because of such a cycle, in DA,

1. \(k \) applies to her favorite \(a \) but \(j \) displaces \(k \),
2. \(k \) is forced to apply to her second choice \(b \), displacing \(i \) from his favorite \(b \),
3. \(i \) is forced to apply to his second choice \(a \), displacing \(j \).
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[\succ_a : i, j, k \]
\[\succ_b : k, i. \]

Because of such a cycle, in DA,

1. \(k \) applies to her favorite \(a \) but \(j \) displaces \(k \),
2. \(k \) is forced to apply to her second choice \(b \), displacing \(i \) from his favorite \(b \),
3. \(i \) is forced to apply to his second choice \(a \), displacing \(j \).

In the end, \(j \) is displaced by school \(a \) anyway, with the result being just causing more rejections and making \(i \) and \(k \) worse off.
There is a chain of applications and rejections in the above example, as we have seen before.

Such a chain is caused by a “cycle” of priorities, that is, two schools’ priorities are

\[\succ_a : i, j, k \]
\[\succ_b : k, i. \]

Because of such a cycle, in DA,

1. \(k \) applies to her favorite \(a \) but \(j \) displaces \(k \),
2. \(k \) is forced to apply to her second choice \(b \), displacing \(i \) from his favorite \(b \),
3. \(i \) is forced to apply to his second choice \(a \), displacing \(j \).

In the end, \(j \) is displaced by school \(a \) anyway, with the result being just causing more rejections and making \(i \) and \(k \) worse off.

Ergin says the priority structure of the schools is **acyclic** if there is no such cycle (the definition is a little more complicated because he considers many-to-one matching, but basic idea is the same).
Theorem (Ergin 2002)

DA is Pareto efficient for all possible student preferences if and only if the priority structure of the schools is acyclic.
Theorem (Ergin 2002)

DA is Pareto efficient for all possible student preferences if and only if the priority structure of the schools is acyclic.

This theorem is bad news for school systems, because most priority structures are cyclic.
Theorem (Ergin 2002)

DA is Pareto efficient for all possible student preferences if and only if the priority structure of the schools is acyclic.

This theorem is bad news for school systems, because most priority structures are cyclic.

Kesten (2006) defined a stronger version of acyclicity and showed
Theorem (Ergin 2002)

DA is Pareto efficient for all possible student preferences if and only if the priority structure of the schools is acyclic.

This theorem is bad news for school systems, because most priority structures are cyclic.

Kesten (2006) defined a stronger version of acyclicity and showed

Theorem (Kesten 2006)

DA and TTC coincide if and only if the priority structure of the schools is Kesten-acyclic.
Theorem (Ergin 2002)

DA is Pareto efficient for all possible student preferences if and only if the priority structure of the schools is acyclic.

This theorem is bad news for school systems, because most priority structures are cyclic.

Kesten (2006) defined a stronger version of acyclicity and showed

Theorem (Kesten 2006)

DA and TTC coincide if and only if the priority structure of the schools is Kesten-acyclic.

Taken together, it is rare for DA to have no efficiency cost, and most likely there is tension between stability and efficiency.
School choice is a new application of matching theory.
School choice is a new application of matching theory.

Stable matching is a fairness criterion: no justified envy.
School choice is a new application of matching theory.

Stable matching is a fairness criterion: no justified envy.

The student-proposing DA is a big winner if stability is important.
Summary

School choice is a new application of matching theory.

Stable matching is a fairness criterion: no justified envy.

The student-proposing DA is a big winner if stability is important.

DA are used in NYC and Boston after economists and policy makers collaborated in design.
School choice is a new application of matching theory.

Stable matching is a fairness criterion: no justified envy.

The student-proposing DA is a big winner if stability is important.

DA are used in NYC and Boston after economists and policy makers collaborated in design.

If stability is not imperative, a different mechanism like TTC may make more sense.
We will continue our discussion of school choice.
Next class

We will continue our discussion of school choice.

An important feature of real school choice problems is that priorities are weak, i.e., many students have the same priority as others.
Next class

We will continue our discussion of school choice.

An important feature of real school choice problems is that priorities are weak, i.e., many students have the same priority as others.

This introduces a lot of new issues on design (details matter in design!).

Reading for next week:

Next class

We will continue our discussion of school choice.

An important feature of real school choice problems is that priorities are weak, i.e., many students have the same priority as others.

This introduces a lot of new issues on design (details matter in design!).

Reading for next week:

Next class

We will continue our discussion of school choice.

An important feature of real school choice problems is that priorities are weak, i.e., many students have the same priority as others.

This introduces a lot of new issues on design (details matter in design!).

Reading for next week:

